

The UMTS Air-Interface in RF Engineering

Design & Operation of UMTS Networks

The UMTS Air-Interface in RF Engineering: **Design and Operation** of UMTS Networks

Shing-Fong Su, Ph.D.

Distinguished Member of Technical Staff, Alcatel-Lucent

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

The McGraw·Hill Companies

Library of Congress Cataloging-in-Publication Data

Su, Shing-Fong.

The UMTS air-interface in RF engineering / Shing-Fong Su.

p. cm.

ISBN 0-07-148866-9 (alk. paper)

1. Radio circuits--Design and construction. 2. Radio frequency. I. Title. TK6560.S87 2007

621.384'12--dc22

2007008339

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, Professional Publishing, McGraw-Hill, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.

The UMTS Air-Interface in RF Engineering: Design and Operation of UMTS Networks

Copyright © 2007 by Alcatel-Lucent. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher.

1234567890 DOC/DOC 01987

ISBN-13: 978-0-07-148866-2 ISBN-10: 0-07-148866-9

Sponsoring Editor

Steve Chapman

Editorial Supervisor

Jody McKenzie

Project Manager Vastavikta Sharma

Acquisitions

Coordinator

Katie Andersen

Copy Editor

Julie M. Smith

Proofreader

Bev Weiler

Indexer

Shing-Fong Su

Production Supervisor

George Anderson

Composition

International Typesetting

and Composition

Illustration

International Typesetting

and Composition

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

The UMTS Air-Interface in RF Engineering

ABOUT THE AUTHOR

Shing-Fong Su, Ph.D., is a distinguished member of the technical staff at Alcatel-Lucent (formerly Lucent Technologies, Inc.). He has been involved in the network design, deployment, and optimization of CDMA, GSM, and UMTS systems in North America, Taiwan, and China. Previously, he was an electrical engineering professor at the University of South Florida. He was also a senior member of the technical staff at GTE Labs. Dr. Su is the holder of seven U.S. patents and the author of over 70 papers in communications and lightwave technology. He also served as a reviewer for many industry publications, including *IEEE Transactions on Communications*, Journal of Lightwave Technology, Applied Optics, and Electronics Letters.

Preface

UMTS technology is no doubt one of the top contenders in the arena of third-generation mobile communications. The 3GPP organization has developed and published numerous specifications on UMTS for the telecommunication communities to follow. The 3GPP specifications start with Release 99 and continue on to Release 4, Release 5, Release 6, and beyond. Network equipment and mobile vendors have developed or are developing UMTS equipment and devices complying with the 3GPP specifications in order to ensure the interoperability of different equipment vendors' systems. Currently, many UMTS systems have been deployed in a number of markets worldwide and more are to come in the near future.

The main objective of this book is to provide wireless telecommunication professionals and students with a basic understanding of UMTS air interface and RF engineering. Understanding the UMTS air interface and RF engineering is indispensable for RF system and field engineers to do a good job in planning, designing, deploying, optimizing, operating, and maintaining UMTS networks. Although the UMTS air interface has been described in detail in 3GPP specifications, many engineers and managers find that reading through all the specifications can be impractical. Faced with an explosive amount of detailed information, engineers may not have the time and luxury to absorb all air interface specifications in a comprehensive way and keep up with their daily work. They need a book that explains the key parts of the UMTS air interface in an organized fashion so that they can grasp the air interface concepts easily and quickly. In addition to air interface, many engineers and managers also desire to have a book that can provide them with knowledge in all aspects of RF engineering so that they can do their jobs more efficiently. These are the two main reasons that prompted me to write this book.

This book presents not only theoretical discussions but also engineering practices. This is especially true in the area of RF engineering, where

the material presented is essentially based on my own engineering experience. The integration of both theory and practice provides one-stop shopping for the required knowledge that engineers and managers need for understanding the UMTS air interface and for designing, deploying, optimizing, operating, and maintaining UMTS networks. Aside from being used as a handbook for engineers and managers, this book may be utilized as a reference book for engineering students as well.

As I kept readability and succinctness in mind when writing this book, I omitted many details of the UMTS air interface described in the 3GPP specifications. However, I adopted the same symbols and terminologies defined in the 3GPP specifications to avoid confusion wherever applicable. In addition, some figures, tables, and sentences are extracted from 3GPP TSs and TRs with ETSI's permission and are indicated by "courtesy of ETSI." The following statement applies to all material extracted from 3GPP TSs and TRs: "3GPP™ TSs and TRs are the property of ARIB, ATIS, ETSI, CCSA, TTA, and TTC who jointly own the copyright in them. They are subject to further modification and are therefore provided to you 'as is' for information purposes only. Further use is strictly prohibited."

UMTS may encompass different access technologies. This book only focuses on the UMTS system with a WCDMA access network operating in FDD mode. There are many concepts that apply not only to UMTS technology but also to other technologies. Therefore, UMTS specific terminologies and general terminologies are used interchangeably throughout this book. For example, Node B and base station are used synonymously, as are UE and mobile.

This book contains 16 chapters. Following is a summary of the topics covered in each one:

- Chapter 1 presents a brief introduction of UMTS, including definitions of UMTS, WCDMA evolution, UMTS services, and UMTS network architecture.
- Chapter 2 describes in detail the UMTS basics, including the protocol stack, UMTS signaling, control planes, user planes, UMTS channels and channel mapping, frame timing, system frame number, connection frame number, UE call states, and UE/subscriber identifiers. Chapter 3 briefly introduces the 3GPP organization and UMTS standards, including standard evolution and standard Releases, with emphasis on radio access specifications.
- Chapters 4 to 7 deal with UMTS access stratum, including Radio Resource Control (RRC), Radio Link Control (RLC), Medium Access Control (MAC), and Physical Layer concepts.
- Chapter 8 depicts cell reselection in detail.

- Chapter 9 discusses handover mechanisms, including soft handover, softer handover, and hard handover. Also discussed in this chapter are measurement control and reporting, and the compressed mode.
- Chapter 10 talks about UMTS power control.
- Chapter 11 offers a brief overview of High-Speed Downlink Packet Access (HSDPA).
- Chapter 12 presents WCDMA radio network planning.
- Chapter 13 gives general concepts on WCDMA RF network optimization, including RF network optimization procedures, drive test, and data analysis.
- Chapter 14 describes the application of repeaters and tower-mounted amplifiers in WCDMA systems. It addresses the engineering considerations for the usage of repeaters and tower top amplifiers in WCDMA networks from a practical point of view and provides some guidelines for repeater deployment.
- Chapter 15 discusses intersystem interference, including interference between WCDMA and CDMA2000, between WCDMA and GSM, and between WCDMA and PHS systems.
- Finally, Chapter 16 gives a comparison of WCDMA and CDMA2000. Similarities and differences of the two systems are examined.

-Shing-Fong Su

Acknowledgments

Many people have helped me in the process of writing this book. Firstly, I would like to thank Sarah Chan. Two years ago, Sarah inspired me to write this book with her suggestion that I should utilize my expertise in the RF engineering field to write a book on UMTS. As my manager, she provided continuous support and encouragement during the past two years. This book would not have been possible without her assistance and the simultaneous support of all the members of the RF engineering group headed by her.

Secondly, I would like to thank Chuck Adelman, Rick Shaw, Gopal Jaisingh, and Talmage Bursh for shepherding this book through the approval process, and my thanks also goes to Paul Mankiewich for granting the final approval. I would also like to thank the European Telecommunications Standards Institute (ETSI) for permitting the usage of many of the figures and tables in the 3GPP specifications.

My colleague, Li Meng, took the time to patiently read the manuscript and to respond with numerous suggestions and corrections. I would like to express my thanks for her contributions. I also thank the anonymous reviewers who provided me with feedback.

I thank Kang Lee and Kelvin Ho for providing me with the opportunity to work with the Lucent China RF engineering and system engineering teams in China. The numerous technical questions that were posed by the teams for me to answer generated an excellent environment for me to enhance my knowledge.

The McGraw-Hill Companies and International Typesetting and Composition provided great support for the publication of this book. I would like to thank both companies, especially Steve Chapman, Jody McKenzie, Vastavikta Sharma, and Julie M. Smith for their assistance during the publication and production processes of this book.

Last but not least, I am indebted to my family. I am profoundly grateful to my wife, Bih-Hwa, for her love and support through the years. Without her encouragement and support of my professional endeavors, I would not have had the capacity and concentration to complete this book in a timely manner.

Nomenclature

16-QAM 16-Quadrature Amplitude Modulation

1x-EVDO 1x Evolution Data Optimized

3G 3rd Generation

3GPP 3rd Generation Partnership Project

AC access class

ACIF Australian Communications Industry Forum
ACIR adjacent channel interference power ratio

ACK acknowledgment

ACLR adjacent channel leakage power ratio

ACS adjacent channel selectivity

AI acquisition indicator

AICH acquisition indicator channel (physical channel)

AM acknowledged mode
AMD acknowledged mode data
AMR adaptive multi-rate
AN access network

ARFCN absolute radio frequency channel number

ARIB Association of Radio Industries and Business, Japan

ARQ automatic repeat request

AS access stratum
ASC access service class

ASN.1 abstract syntax notation one

ATIS Alliance for Telecommunications Industry Solutions, North America

AuC authentication center

AWGN additive white Gaussian noise

BCH broadcast control channel (logical channel)
BCH broadcast channel (transport channel)
BER bit error rate

BER bit error rate
BLER block error rate

BMC broadcast/multicast control BPSK binary phase shift keying

BS base station

BSC base station controller

BSIC base station identification code
BTS base transceiver subsystem
BTSD base station desensitization
BWAF bandwidth adjustment factor

xxii Nomenclature

C-RNTI cell radio network temporary identity

CBS cell broadcast service

CC call control

CCCH common control channel (logical channel)

CCITT Consultative Committee on International Telephony and Telegraphy

CCPCH common control physical channel

CCSA China Communications Standards Association, China

CCTrCh coded composite transport channel
CDF cumulative distribution function
CDMA code division multiple access
CFN connection frame number
C/I carrier-to-interference ratio
CIO cell individual offset

CK cipher key

CM connection management; compressed mode

CN core network

CPCH common packet channel (transport channel)
CPICH common pilot channel (physical channel)

CQI channel quality indicator CRC cyclic redundancy check

CRCI cyclic redundancy check indicator
CS circuit switched; PHS base station
CTCH common traffic channel (logical channel)
Cu interface for mobile equipment and USIM

CWTS China Wireless Telecommunications Standard Group

dB Decibel D/C data/control

DCCH dedicated control channel (logical channel)
DCH dedicated channel (transport channel)
DGPS differential global positioning system

DL downlink DOFF DPCH offset

DPCCH dedicated physical control channel (physical channel)

DPCH dedicated physical channel

DPDCH dedicated physical data channel (physical channel)

DRAC dynamic resource allocation control

DRX discontinuous reception

DSCH downlink shared channel (transport channel)

DS-CDMA direct spread CDMA

DTCH dedicated traffic channel (logical channel)

DTX discontinuous transmission

E extension bit

EDGE enhanced data rates for GSM evolution

EFR enhanced full rate

EIRP equivalent isotropic radiated power

EM electromagnetic

EPC estimated PDU counter

ETSI European Telecommunications Standards Institute

EVDO evolution data optimized FAC final assembly code

FACH forward access channel (transport channel)

FBI feedback indicator bits
FDD frequency division duplex
FEC forward error correction

FER frame error rate FP frame protocol

F-FCH forward fundamental channel

F-PICH forward pilot channel

F-QPCH forward quick paging channel F-SCH forward supplemental channel F-SYNCH forward synchronization channel

FSPL free space path loss FTP file transfer protocol

GERAN
GSM/EDGE radio access network
GGSN
GPRS gateway support node
GMM
GPRS mobility management
GMSC
gateway mobile switching center
GPRS
general packet radio service
GPS
global positioning system

GSA Global Mobile Suppliers Association, UK
GSM Global System for Mobile communications

HARQ hybrid automatic repeat request HCS hierarchical cell structure

HE header extension
HFN hyper-frame number

HFNI hyper-frame number indicator

HLR home location register

HSDPA high speed downlink packet access

HS-DPCCH high speed dedicated physical control channel

HS-DSCH high speed downlink shared channel (transport channel)

HS-PDSCH high speed physical downlink shared channel (physical channel)

HS-SCCH high speed shared control channel (physical channel)

HTTP hyper text transfer protocol

Hz Hertz

IE information element

IK integrity key

IMEI international mobile equipment identity

IMP inter-modulation product

IMSI international mobile subscriber identity

IMT-2000 International Mobile Telephony

IP internet protocol

IR incremental redundancy

ISACC ICT Standards Advisory Council, Canada

ISCP interference on signal code power

ITU International Telecommunications Union
Iu interface for RNC-to-CN communication
Iub interface for RNC and Node B communication
Iur interface for RNC-to-RNC communication

kbps kilobits per second

km kilometer

xxiv Nomenclature

ksps kilosymbols per second

L1 Layer 1
L2 Layer 2
L3 Layer 3
LA location area
LAC location area code
LAI location area identity

LCR TDD low chip rate time division duplex

LNA low noise amplifier

MAC medium access control (protocol layering context); message

authentication code (security context)

MAC-b MAC for broadcast channels

MAC-c/sh MAC for common and shared channels

MAC-d MAC for dedicated channels
MAC-hs HSDPA medium access control

MAC-I message authentication code for integrity protection

MAP mobile application part
Mbps megabits per second
MCC mobile country code
Mcps megachips per second
ME mobile equipment

MHz megahertz

MIB master information block
MIMO multiple input multiple output

MM mobility management
MNC mobile network code

MRP market representation partners

MRW move receiving window

MS mobile station ms or msec millisecond

MSC mobile switching center

MSIN mobile subscriber identification number

MUX multiplex

NACK negative acknowledgment
NAS non-access stratum
NBAP Node B application part
NIM noise injection margin

NMSI national mobile subscriber identity

NMT Nordic Mobile Telephone Node B UMTS base station

OA&M operations, administration and maintenance

OMC operation and maintenance center
OTDOA observed time difference of arrival
OVSF orthogonal variable spreading factor

P polling bit PAD padding

P-CPICH primary common pilot channel (physical channel)
P-SCH primary synchronization channel (physical channel)

P-TMSI packet temporary mobile subscriber identity

PCA power control algorithm

PCCC parallel concatenated convolutional code

PCCH paging control channel (logical channel)

PCCPCH primary common control physical channel (physical channel)

PCH paging channel (transport channel)

PCP power control preamble

PCPCH physical common packet channel (physical channel)

PCS personal communication systems PDCP packet data convergence protocol

PDSCH physical downlink shared channel (physical channel)

PDSN packet data switching network

PDU protocol data unit

PHS personal handy-phone system

PHY physical layer PI page indicator

PICH paging indicator channel (physical channel)

PLMN public land mobile network PN pseudorandom noise

PO power offset

PPP point-to-point protocol

PRACH physical random access channel (physical channel)

PS packet switched; PHS mobile
PSC primary scrambling code
P-SCH primary synchronization change

P-SCH primary synchronization channel PSTN public switched telephone network

P-TMSI packet temporary mobile subscriber identity

QE quality estimate QoS quality of service

QPSK quadrature phase shift keying

R1 reserved field
RA routing area
RAB radio access bearer
RAC routing area code

RACH random access channel (transport channel)

RAI routing area identity
RAN radio access network
RAND random number
RAT radio access technology

DD

RB radio bearer
R-DCCH reverse dedi

R-DCCH reverse dedicated control channel
R-EACH reverse enhanced access channel
R-FCH reverse fundamental channel
R-SCH reverse supplemental channel
RF radio frequency

RF radio frequency
RLC radio link control
RNC radio network controller

RNSAP radio network subsystem application part

RNTI radio network temporary identity

RRC radio resource control; root-raised-cosine

RRM radio resource management RSCP received signal code power RSN reset sequence number

xxvi Nomenclature

RSSI received signal strength indicator

RTP real time protocol RTT round trip time

Rx receive

SAW stop and wait

S-CPICH secondary common pilot channel (physical channel)
S-SCH secondary synchronization channel (physical channel)

SCCPCH secondary common control physical channel (physical channel)

SCH synchronization channel (physical channel)
SDU service data unit; segmented data unit

SF spreading factor
SFN system frame number
SGSN serving GPRS support node
SIB system information block

SID size index

SIR signal-to-interference ratio SM session management SMS short message service sequence number SN SRB signal radio bearer SS supplementary services SSC secondary scrambling code site selection diversity transmit SSDT STTD space time transmit diversity

SUFI superfield

TAC type approval code

TCP transmission control protocol TCTF target channel type field

TD-SCDMA time division synchronous code division multiple access

TDD time division duplex TF transport format

TFC transport format combination

TFCI transport format combination indicator
TFCS transport format combination set
TFRC transport format resource combination
TFRI transport format resource indicator

TFS transport format set transmission gap

TGCFN transmission gap connection frame number

TGD transmission gap start distance
TGL transmission gap length
TGP transmission gap pattern
TGPL transmission gap pattern length

TGPRC transmission gap pattern repetition count

TGPS transmission gap pattern sequence

TGPSI transmission gap pattern sequence identifier
TIA Telecommunications Industries Association, US

TM transparent mode

TMSI temporary mobile subscriber identity

TOI third order intercept

TPC transmission power control

TRX transmitter/receiver, also transceiver

TTI transmission time interval

TTA Telecommunications Technology Association, Korea TTC Telecommunications Technology Committee, Japan.

Tx transmit

U-RNTI UTRAN radio network temporary identity
UARFCN UTRA absolute radio frequency channel number

UDP user datagram protocol

UE user equipment

UEA1 UMTS encryption algorithm 1
UIA1 UMTS integrity algorithm 1

UL uplink

UM unacknowledged mode

UMTS Universal Mobile Telecommunications System

URA UTRAN registration area

USIM universal subscriber identity module

UTC coordinated universal time
UTRA universal terrestrial radio access

UTRAN UMTS (universal) terrestrial radio access network
Uu over-the-air interface between the UE and the Node Bs

VLR visitor location register

VoIP voice over IP

VSWR voltage standing wave ratio

WCDMA wideband code division multiple access

Contents

Preface xv Acknowledgments xix Nomenclature xxi

Chapter 1. Introduction to UMTS		1
1.1	What Is UMTS?	1
1.2	Evolution of WCDMA	2
1.3	UMTS Services	3
1.4	UMTS Network	4
	1.4.1 Core network	4
	1.4.2 UTRAN	5
	1.4.3 User equipment	6
1.5	UMTS Frequency Band and Channel Arrangement	6
	1.5.1 Frequency Bands	6
	1.5.2 UTRA/FDD Transmit-To-Receive (Tx-Rx) Frequency Separation	7
	1.5.3 Channel Arrangement	7
	1.5.4 Carrier Frequency	7
× 5	1.5.5 UARFCN	8
1.6	Organization of the Book	8
	References	10
Chapter 2. UMTS Fundamentals		11
2.1	UMTS Network Topology	11
2.2	UMTS Signaling Protocol Stack	12
	2.2.1 Circuit-Switched Control Plane Protocol Stack	13
	2.2.2 Packet-Switched Control Plane Protocol Stack	14
	2.2.3 Circuit-Switched User Plane Protocol Stack	14
	2.2.4 Packet-Switched User Plane Protocol Stack	15
2.3	Access Stratum Data Flow	15
	2.3.1 RRC Functions	15
	2.3.2 RLC Functions	16
	2.3.3 MAC Functions	16
0.4	2.3.4 Physical Layer Functions	16
2.4	UMTS Channels	17