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Preface

C. F. GauB in a letter from Dec. 26, 1823 to
Gerling:

Jch  empfehle Jhnen Dbdiesen Mobus Fur
RNachahmung. Schwerlich werden Sie je wieder di-
rect eliminiren, wenigftens nicht, wenn Sie mebr
als 2 Unbefannte haben. Das indirecte Berfahren
ldsst sich halb im Schlafe ausfiihren, ober man fann
wibrend desselben an andere Dinge denfen.

[C. F. Gau}: Werke vol. 9, Géttingen, p. 280,
1903]

What difference exists between solving large and small systems of equations?
The standard methods well-known to any student of linear algebra are appli-
cable to all systems, whether large or small. The necessary amount of work,
however, increases dramatically with the size, so one has to search for algo-
rithms that most efficiently and accurately solve systems of 1000, 10,000, or
even one million equations. The choice of algorithms depends on the special
properties the matrices in practice have. An important class of large systems
arises from the discretisation of partial differential equations. In this case,
the matrices are sparse (i.e., they contain mostly zeros) and well-suited to
iterative algorithms. Because of the background in partial differential equa-
tions, this book is closely connected with the author’s Theory and Numerical
Treatment of Elliptic Differential Equations, whose English translation has
also been published by Springer-Verlag.

This book grew out of a series of lectures given by the author at the
Christian-Albrecht University of Kiel to students of mathematics. It tries to
describe the recent state of iterative and related methods, without, however,
delving into specialised areas. Even the volume’s limitation to iterative tech-
niques entails a selection: Various fast direct algorithms for special problems
as well as the optimised versions of GauB elimination, the Cholesky method,
or band-width reduction are not taken into consideration.

Although special attention is devoted to the modern effective algorithms
(conjugate gradients, multi-grid methods, parallel techniques), the theory of
classical iterative methods should not be neglected. On the other hand, some
effective algorithms are not or only marginally considered, if they are con-
nected too closely with discretisation techniques that are not the subject of
this book. A discussion of the iterative treatment of nonlinear problems or
of eigenvalue problems is completely avoided. A chapter on saddle-point
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problems (special indefinite problems) arising in many interesting applica-
tions could not be realized because of the need to limit the size of the book.

This volume requires no basic mathematical knowledge other than
courses on analysis and linear algebra. The principles of linear algebra are
summarised in Chapter 2 of this book in order to provide as complete a
presentation as possible and present the formulation and notation needed here.

With respect to a course of study, a selection of the given material is best
suited to a full-semester course (four hours a week) in the second part of
the study (between Vordiplom and Diplom). A partial selection can also be
recommended for the second part of a course on numerical analysis.

The exercises cited, which may also be understood as remarks without
proof, are an integral part of the presentation. Should this book be used as
the basis for an academic course, they can be assigned as problems for stu-
dents. However, the non-student reader should also try to test his compre-
hension by working on these exercises.

The discussion of the various methods is illustrated by very many numeri-
cal examples, mostly for the Poisson-model problem. To enable the inter-
ested reader to test the algorithms with other parameters, step sizes, etc.,
the PAascAL programs are explicitly given. A collection of the source codes
required is available on disk (see [Prog] in the bibliography). The programs
can also be used independently of the book for producing numerical exam-
ples for courses or seminars.

The present English version contains corrections of several misprints still
in the original German edition. New publications have been added to the
bibliography. Furthermore, we replaced references to German textbooks by
English equivalents as much as possible.

The author would like to thank his colleagues, in particular Mr. J.
Burmeister, for their help in proofreading. I am grateful for the stimulating
conversations with W. Niethammer, G. MaeB, M. Dryja, G. Wittum, O.
Widlund, and others. I also wish to express my gratitude to Teubner
(publisher of the German version) and Springer-Verlag for their friendly co-
operation on both the German and English editions of this book.

Kiel, April 1993 W. Hackbusch

Hints for Reading the Book:

§1: Prelude

§2: Thoughts to serve for reference. However, one should glance through
§2.1.

§3: Read §§3.1-3 first. Rest ad libitum.

§4: Chapters 4.2-3 (classical iterations) are the basis of almost all other

considerations. §4.4 deals with the corresponding convergence

Preface vii

analysis. §§4.1 and 4.7 refer to the Poisson-model problem and serve
as illustration. First, §§4.5 and 4.8 may be passed over.

§5: Contains the SOR analysis and may be left out during the first
reading.

§6: Independent chapter. The other parts refer only very seldom to §6.

§7: Necessary preparation to §9

§§8-11: Each chapter is independent.
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Notations

Numbers of formulae: Equations in a subchapter x.y are numerated by (x.y.1),
(x.y.2) etc. The equation (3.2.1) is quoted by (1) in the same Section 3.2, while
we write (2.1) in the other sections of chapter 3.

Numeration of Theorems etc.: All theorems, definitions, and lemmata etc. are
enumerated together. The reference to a theorem etc., is analogous to what is
said above. Lemma 3.2.7 is cited as «Lemma 7» in Section 3.2, while in
the other sections of chapter 3 it is denoted by «Lemma 2.7». However, §1
indicates Chapter 1 and never the sections §3.1 or §3.2.1.

Special Symbols, Abbreviations, and Conventions

ab bounds for a(M); cf. (4.8.4c), Theorem 7.3.8
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cond condition, cond,: spectral condition; cf. (2.10.7)
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1
Introduction

1.1 Historical Remarks Concerning Iterative
Methods

Iterative methods are almost 170 years old. The first iterative method for
systems of linear equations is due to Carl Friedrich GauB (the less correct
spelling is: Gauss). His least squares method led him to a system of equations
that was too large for the use of direct GauB elimination. The iterative meth-
od described in “Supplementum theoriae combinationis observationum er-
roribus minime obnoxiae” (1819-1822) today would be called the blockwise
GauB-Seidel method. The value that GauB attributed to his iterative method
can be seen in the excerpt from his letter of 1823 preceding the foreword of
this book.

A very similar method was described by Carl Gustav Jacobi in his 1845
paper “Uber eine neue Auflésungsart der bei der Methode der kleinsten
Quadrate vorkommenden linearen Gleichungen” (“On a new solution meth-
od of linear equations arising from the least square method”; Astronom.
Nachr.). In 1874 Phillip Ludwig Seidel, a student of Jacobi, wrote about
“a method, to solve the equations arising from the least squares method
as well as general linear equations by successive approximation” (“Uber ein
Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate
fiihrt, sowie lineare Gleichungen iiberhaupt, durch successive Anndherung
aufzulosen”; Miinch. Abh.).

Since the time that electronic computers became available for solving
systems of equations, the number of equations has increased many orders of
magnitudes and the methods mentioned above have proved to be too slow.
After 100 years of stagnation in this field, Southwell [1-3] experimented with
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variants of the GauB-Seidel method («relaxation») and, in 1950, Young [1]
succeeded in a breakthrough. His variant of the GauB-Seidel method leads to
an important acceleration of the convergence. This so-called SOR method
will be described in §1.4 as an example of an iterative method. Since then,
numerous other methods even more effective have been developed. Most of
them are discussed in this book.

1.2 Model Problem (Poisson Equation)

During the time of GauB, Jacobi and Seidel, the equations of the least square
method have led to a larger number of equations. Today, in particular the
boundary-value problems, ie. the partial differential equations of elliptic
type, lead to a number of equations of orders between 1000 and one million.
In the following we will often refer to a model problem representing the
simplest nontrivial example of a boundary-value problem. It is the Poisson
equation

—Aulx,y) = f(x,y) for(x,y)eQ, (1.2.1a)
u(x,y) = ¢(x,y) onI =0Q. (1.2.1b)
Here
?* P
= + 5
abbreviates the Laplace operator. As domain Q we choose the unit square
Q=(0,1) x (0,1). (1.2.1¢)

In (la, b) the source term f and the boundary value ¢ are given, while the
function u is unknown.

To discretise the differential equation (1a—c) the domain Q is covered with
a grid of the step size h (cf. Figure la). Each grid point (x, y) must have the
representation x = ih, y = jh (0 < i,j < N), where

h=1/N. (1.2.2)
By the term grid the set of inner grid points is meant:
Q= {(x,y) = (ih,jh): 1 <i,j <N — 1}. (1.2.3)

We abbreviate the desired values u(x, ) = ulih, jh) by u;;. An approximation
for the differential equation (1a) is given by the so-called five-point formula
h_2[4uu T Uy T Uy Uy — "i.j+1] = f;‘j (1.2.4a)
with f; = f(ih,jh) for 1 <i, j < N — 1. The left side in (4a) coincides with
— Au(ih, jh) up to a consistency error O(h?), when the solution u of (1a,b) is

inserted (cf. Hackbusch [15]). For grid values on the boundary, i.c. for i = 0,
i=N,j=0o0rj=N,u;is known from the boundary data (1b):

;= @lih,jh) fori=0,i=N,j=0o0rj=N. (1.2.4b)

1.2. Model Problem (Poisson Equation) 3

Fig. 1.2.1a Inner grid points (o) and boundary points (x )

The number of the unknown u, 7 is n:=(N — 1)* and corresponds to the
number of the inner grid points. In order to form the system of equations, one
has to eliminate the boundary values (4b), which possibly may appear in (4a).
For example for N > 3 the equation corresponding to the index (i,j) = (1,1)
reads

h™2[4u,, — Uz —uy]=g;; with 911 = f(hh) + h_z[‘P(O’ h) + ¢(h,0)].
In order to write the equations in the commonly used matrix formulation
Ax=b (1.2.5)

with an n x n matrix A and n-dimensional vectors x and b withn = (N — 1),
one is forced to represent the twofold indexed unknowns u;; by a singly indexed
vector x. This implies that the (inner) grid points must be enumerated in some
way. Figure 1b shows the lexicographic ordering. The exact definition of the
matrix A and of the right-hand side b can be seen from the following

Definition of the matrix A and of the vectors b by lexicographical
ordering for the Poisson-model problem: (1.2.6a)

Nl:=N—-1Ln=N1xNL;h2:= 1/(N = N);
k:=0; {1 < k < nis the index with respect to the lex. ordering}
A :=0; {all entries of A are initialised by zero}
forj:=1toNldofori:=1toN1do
begin k:=k + 1; a, := 4+ h2; by := f(ih,jh);
ifi>1 thena,_,, = —h2else by = by + h2x (0, jh);
ifi<Nlthena,,, , = —h2else by = b, + h2#* @(1,jh);
ifj>1 thena,, y, = —h2else by == by + h2 = o(ih, 0);
ifj <Nlthena,,y, = —h2else b, := by, + h2x ¢(ih, 1)
end;

Vice versa, the solution x of Ax = b is to be interpreted as
X = u; = u(ih,jh) fork =i+ (j— 1)x(N — Dwith0<ij<N. (1.2.6b)
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Fig. 1.2.1b Lexicographical ordering

When x is interpreted as the grid function, we shall use the notation u;; or
u(x, y) with x = ih, y = jh.

Remark 1.2.1. The reformulation of the two-dimensionally ordered un-
knowns into a one-dimensionally ordered vector is rather unobvious. The
reason should not be sought in the two-dimensional nature of the problem,
but rather in the questionable concept of enumerating the components of a
vector from 1 to n. We shall see that the matrix A4 will never be needed in the
presentation (2.6a).

If, nevertheless, one wants to represent the matrix A in the usual form, 4
must be written as a block matrix. The vector x decomposes naturally into
N — 1 blocks

withk:=(j— 1)*(N—-1)
forj=1,..., N—1,

Xk +1 Uy,j

xW = (1.2.7)

Xk +N-1 UN-1,j
corresponding to the jth row in the grid Q,. Accordingly, A4 takes the form of
a block-tridiagonal matrix built from (N — 1) x (N — 1) blocks 7, which

again are tridiagonal (N — 1) x (N — 1) matrices:

T-1I ] [ 4 —1 ]
—1 T -1 -1 4 -1
— - -1 4 —1
A=h? ’._ T._ 1., , T= o
1 T -=I -1 4 -1
-1 T -1 4
- - - (1.2.8)

I is the (N — 1) x (N — 1) identity matrix. Unmarked matrix entries or
blocks are zeros or zero blocks, respectively. The representation (8) proves

Fig. 1.2.1c Chequer-board ordering

Remark 1.2.2. For the lexicographical ordering of the unknowns, the matrix
A has a block-tridiagonal structure.

Lexicographical ordering is by no means the only ordering one can think
of. Another frequently used aproach is the chequer-board ordering (cf. Fig.
Ic). In that case, the components u;; with an even sum i + j («black squares»)
are enumerated first and thereafter those with an odd sum i+ j («red
squares») are numbered lexicographically. In the course of the next chapters
further orderings will be mentioned. A broad collection of orderings of prac-
tical interest is given by Duff-Meurant [1].

Exercise 1.2.3. In the case of the chequer-board ordering, 4 decomposes into
two blocks corresponding to the «red» and «black» indices. Prove that 4 has
the block structure (9) with a rectangular submatrix B and identity matrices
I, I,, where the block size is given by the number of the red and black grid
points:

D, B
AZI: ' ] D,=4h7%,, D, =4h7’l, (1.29)

BT D,

1.3 Amount of Work for the Direct Solution of
the System of Equations

Those methods are called direct that terminate after finitely many operations
with an exact solution (up to rounding errors). The best known direct method
is GauB elimination. In the case of the model problem from §1.2, one may
perform this method without pivoting (cf. §6.4.4). Concerning the valuation of
the amount of computational work, we do not distinguish between additions,
subtractions, multiplications, or divisions. Each is counted as one (arithmeti-
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cal) operation. Traditionally, arithmetical operations for indices, data trans-
fer, and similar activities are not counted.

Remark 1.3.1. In the general case the GauB elimination for the solution of a
system of n equations Ax = b requires 2n3/3 + O(n?) operations. The storage
amounts to n? + a.

Proof. During the ith elimination step, the ith row contains n — i nonzero
elements, whose multiples are to be subtracted from n — i — 1 matrix rows.
Summation of these 2{n — i)* 4+ O(n) operations over 1 <i < n yields the
assertion. O

In the model case, n equals (N — 1)2 = h™2 4 O(h™') and implies

Remark 1.3.2. A naive application of the GauBl elimination to the model
problem from §1.2 leads to 2N®/3 + O(N°) = 2h™%/3 + O(h™°) operations
and requires a storage of N* + O(N3) = h™* + O(h™3).

Halving the grid size h yields the 64-fold amount of computational work.
If we assume 1 CPU sec for the solution of grid size h, the same computation
for the quartered grid size h/4 consumes more than 1 CPU hr!

However, the amount of work diminishes if the system matrix 4 is a band
matrix.

Definition 1.3.3. 4 is a band matrix of band width w, if a;; = 0 for all indices
with |i — j| > w.

A band matrix has at maximum 2w side-diagonals besides the main diago-
nal. Concerning the analysis of the properties of band matrices, we refer to

Berg [1].

Remark 1.3.4. The matrix A arising from the lexicographical ordering for
the model problem according to (2.7) is a band matrix of band width
w=N-1

The major part of the amount of work given in Remark 1 consists of
unnecessary multiplications and additions by zeros. During the ith elimi-
nation step the ith row contains w + 1 nonzero elements. It suffices to
eliminate the next w rows. This leads to 2w? operations. In total one
obtains

Remark 1.3.5. The amount of work for the GauBl elimination without
pivoting for solving a system with an n x n matrix of band width w amounts
to 2nw? + O(nw + w?). The storage requirement reduces to 2n(w + 1), when
only the 2w + 1 diagonals of 4 and the right-hand side b are stored.
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'Remark 1.3.6. In the case of the model problem from §1.2, w equals N — 1.

Therefore, the banded GauB elimination requires 2N* 4+ O(N3) = 2h™* +
O(h~?) operations and a storage of 2N> + O(N?).

In the latter version, 2w + 1 diagonals of A are used, although the matrix
A from (2.8) has only five diagonals: the main diagonal, two side-diagonals
with distance 1, and two further ones with distance N — 1. Unfortunately,
one cannot exploit this property for the Gauf} elimination because of

Remark 1.3.7. The zeros in the second to (N — 2)th side-diagonals of the
matrix A from (2.8) are completely filled during the elimination process with
nonzeros (with the exception of the first block).

This occurrence is called fill-in and indicates a principal disadvantage of
GauB elimination when applied to sparse matrices. Here, we call an n x n
matrix sparse, if the number of nonzero entries is by far smaller than »?.
Otherwise, the matrix is called a full matrix. Because of the equivalence of
GauB elimination to the triangular or LU decomposition (cf. Stoer [1, §4.1],
Stoer-Bulirsch [1, §4.17, the same difficulties exist in the latter technique.

Remark 1.3.8. The decomposition 4 = LU into a lower triangular matrix L
and an upper triangular matrix U for the sparse matrix 4 from (2.8) yields
factors L and U, which are full band matrices of width w = N — 1. The same
holds for Cholesky decomposition.

There are special direct methods solving the system described in §1.2 with
an amount of work between O(n) = O(N?) and O(nlogn) = O(N?log N). Ex-
amples are the Buneman algorithm and the method of total reduction, both
described in Meis—Markowitz [1] (cf. also Buneman [1], Bjorstad [1], Duff-
Erisman-Reid [1], Schroder-Trottenberg [1]).

1.4 Examples of Iterative Methods

For the iterative solution of a system of equations, one starts with an arbi-
trary starting vector x° and computes a sequence of iterates (iterands) x™ for
m=12...:

X xtxtxi o xm s x™t s e

In the following x™*! is dependent only on x™, so that the mapping x™ —

x™*1 determines the iteration method. The choice of the starting value x° is
not part of that method.

The already mentioned GauB-Seidel iteration for solving the system (2.5):
Ax = b is as follows:



