


INFORMATION
SYSTEMS
DEVELOPMENT

Paul Beynon-Davies

Department of Computer Studies
Polytechnic of Wales

M

MACMILLAN



© P. Beynon-Davies 1989

All rights reserved. No reproduction, copy or transmission of this publication may
be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save
with written permission or in accordance with the provisions of the Copyright Act
1956 (as amended), or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 33—4 Alfred Place, London WC1E 7DP.

Any person who does any unauthorised act in relation to this publication may be
liable to criminal prosecution and civil claims for damages.

First published 1989

Published by

MACMILLAN EDUCATION LTD

Houndmills, Basingstoke, Hampshire RG21 2XS
and London

Companies and representatives

throughout the world

Laserset by
Ponting—Green Publishing Services, London

Printed in Great Britain by
Billing & Sons Ltd, Worcester

British Library Cataloguing in Publication Data

Beynon-Davies, Paul
Information Systems Development.—(Macmillan
computer science series).
1. Information systems
I. Title
001.5

ISBN 0-333-48034-1
ISBN 0-333-48035-X Pbk



Macmillan Computer Science Series
Consulting Editor Professor F.H. Sumner, University of Manchester

S.T. Allworth and R.N. Zobel, Introduction to Real-time Software Design, second edition
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using FORTRAN 77
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using Pascal
Ian O. Angell, High-resolution Computer Graphics Using C
M. Azmoodeh, Abstract Data Types and Algorithms
C. Bamford and P. Curran, Data Structures, Files and Databases
Philip Barker, Author Languages for CAL
A.N. Barrett and A.L. Mackay, Spatial Structure and the Microcomputer
R.E. Berry, B.A.E. Meekings and M.D. Soren, A Book on C, second edition
P. Beynon-Davies, Information Systems Development
G.M. Bintwistle, Discrete Event Modelling on Simula
B.G. Blundell, C.N. Daskalakis, N.A.E. Heyes and T.P. Hopkins, An Introductory Guide to
Silvar Lisco and Hilo Simulators
B.G. Blundell and C.N. Daskalakis, Using and Administering an Apollo Network
T.B. Boffey, Graph Theory in Operations Research
Richard Bomat, Understanding and Writing Compilers
Linda E.M. Brackenbury, Design of VLSI Systems — A Practical Introduction
G.R. Brookes and A.J. Stewart, Introduction to occam 2 on the Transputer
J.K. Buckle, Software Configuration Management
W.D. Burnham and A.R. Hall, Prolog Programming and Applications
P.C. Capon and P.J. Jinks, Compiler Engineering Using Pascal
J.C. Cluley, Interfacing to Microprocessors
J.C. Cluley, Introduction to Low-level Programming for Microprocessors
Robert Cole, Computer Communications, second edition
Derek Coleman, A Structured Programming Approach to Data
Andrew J.T. Colin, Fundamentals of Computer Science
Andrew J.T. Colin, Programming and Problem-solving in Algol 68
S.M. Deen, Fundamentals of Data Base Systems
S.M. Deen, Principles and Practice of Database Systems
C. Delannoy, Turbo Pascal Programming
Tim Denvir, Introduction to Discrete Mathematics for Software Engineering
P.M. Dew and K.R. James, Introduction to Numerical Computation in Pascal
D. England et al., A Sun User’s Guide
A.B. Fontaine and F. Barrand, 80286 and 80386 Microprocessors
K.C.E. Gee, Introduction to Local Area Computer Networks
J.B. Gosling, Design of Arithmetic Units for Digital Computers
M.G. Hartley, M. Healey and P.G. Depledge, Minri and Microcomputer Systems
Roger Hutty, Z80 Assembly Language Programming for Students
Roland N. Ibbett and Nigel P. Topham, Architecture of High Performance Computers,
Volume I
Roland N. Ibbett and Nigel P. Topham, Architecture of High Performance Computers,
Volume Il
Patrick Jaulent, The 68000 — Hardware and Software
P. Jaulent, L. Baticle and P. Pillot, 68020-30 Microprocessors and their Coprocessors
J.M. King and J.P. Pardoe, Program Design Using JSP — A Practical Introduction
E.V. Krishnamurthy, /ntroductory Theory of Computer Science
continued overleaf



V.P. Lane, Secwrity of Computer-Based Information Systems

Graham Lee, From Hardware to Software — An Introduction To Computers
AM. Lister and R.D. Eager, Fundamentals of Operating Systems, fourth edition
Tom Manns and Michael Coleman, Software Quality Assurance

Brian Meek, Fortran, PL/1 and the Algols

A. Mével and T. Guéguen, Smalltalk-80

R.J. Mitchell, Microcomputer Systems Using the STE Bus

Y. Nishinuma and R. Espesser, UNIX - First Contact

Pim Oets, MS-DOS and PC-DOS - A Practical Guide, second edition

A.l. Pilavakis, UNIX Workshop

Christian Queinnec, LISP

E.J. Redfem, Introduction to Pascal for Computational Mathematics

Gordon Reece, Microcomputer Modelling by Finite Differences

W.P. Salman, O. Tisserand and B. Toulout, FORTH

L.E. Scales, Introduction to Non-linear Optimization

Peter S. Sell, Expert Systems — A Practical Introduction

A.G. Surcliffe, Human—Computer Interface Design

Colin J. Theaker and Graham R. Brookes, A Practical Course on Operating Systems
M.R. Tolhurst et al., Open Systems Interconnection

J-M. Trio, 8086-8088 Architecture and Programming

A.J. Tyrrell, COBOL from Pascal

M.J. Usher, Information Theory for Information Technologists

B.S. Walker, Understanding Microprocessors

Colin Walls, Programming Dedicated Microprocessors

LR. Wilson and A.M. Addyman, A Practical Introduction to Pascal — with BS6192, second
edition

Non-series

Roy Anderson, Management, Information Systems and Computers

I1.O. Angell, Advanced Graphics with the IBM Personal Computer

J.E. Bingham and G.W.P Davies,-Planning for Data Communications

B.V. Cordingley and D. Chamungd, Advanced BASIC Scientific Subroutines
N. Frude, A Guide to SPSS/PC +

Barry Thomas, A PostScript Cookbook






Preface

Most of the conventional material on information systems development is
deterministic in the sense that it imposes some prior framework on the use
of the techniques available. The present book is designed to be as flexible
or non-deterministic as possible. It provides a series of relatively discrete,
self-contained sections or notebooks on important topics in the field. It
therefore largely leaves it up to readers of the book to impose their own
determinism.

This mode of presentation will, I feel sure, be of greater benefit to
persons running courses in systems development than the traditional approach
tied to one methodology. It will also, I feel sure, more clearly suit the
purposes of computer professionals with a desire to know more about
particular topic-areas. This applies not only to those persons who perhaps
do not wish to work within the confines of any one methodology, but also to
those looking for a more detailed treatment of specific subject-areas that are
perhaps not well covered in the documentation of an existing methodology.

The book is divided into four major parts. The first part provides an
initial discussion of some of the background issues involved in the need for,
and development of, a systematic discipline of information systems develop-
ment. We discuss the software problem, the project life-cycle, the develop-
ment of structured analysis, design and programming, and relational database
systems.

The second part discusses the major techniques of contemporary systems
development. It describes a tool-kit out of which most of the contemporary
methodologies have been built: data-flow diagramming, data dictionaries,
normalisation, entity—relationship diagramming, entity life-histories, struc-
tured walkthroughs and structured design. Each of these sections contains
three parts: a detailed discussion of the technique, a small example, and a
set of problems for further study.

The third part of the book discusses a number of tools designed to aid or
enhance the software development process. We cover the present generation
of computer-aided software engineering (CASE) tools, most notably inte-
grated project support environments and fourth-generation languages. We
also highlight the role that knowledge-based systems may have in the
development environments of the future.

In the final part we discuss issues relating to the organisation of systems

vii



viii Information Systems Development

development. That is, how some of the tools and techniques previously
covered take their place within a general methodology or ‘philosophy’ of
systems development.

Information systems development has become almost exclusively associa-
ted in Britain with one particular government standard methodology which
goes under the title of structured systems analysis and design method
(SSADM). A recent paper has however criticised the trend towards
developing competing methodologies — a trend that we might label as
‘methodolotary’. Benyon and Skidmore (1987) believe that the method-
olotary trend is hampering progress towards successful systems analysis.
They consider it is unlikely that a single methodology can prescribe how to
tackle the great variety of tasks and situations experienced by the systems
analyst.

There are, however, alternatives to the ‘waterfall’ model of systems
development as characterised by frameworks such as SSADM. In the fourth
part of the book, therefore, we also consider rapid prototyping and James
Martin’s suggestion for an encompassing discipline of information engin-
eering, based around the explicit use of CASE tools.

The concluding chapter considers some of the possibilities for the future
of information systems development. We organise our discussion in terms
of one central premise, that information systems development is primarily a
case of conceptual modelling. This premise encourages us to discuss three
areas of modern computing that are contributing new tools, techniques and
philosophies to this endeavour: artificial intelligence, database work and
programming languages.



Contents

o 0 N A U AW N -

Pt ek ek el el ek ek e
W N N AW =D

Preface

Introduction

Databases and database management systems
Relational database systems
Normalisation

Entity-relationship diagramming
Data-flow diagramming

Logical data dictionaries

Entity life histories

Process descriptions

Structured program design

Structured walkthroughs

Integrated project support environments
Fourth-generation environments
Knowledge-based systems

Large-scale methodologies

Rapid prototyping

Information engineering

The future of information systems development
Bibliography

Glossary

Suggested solutions

Index

vii

11
17
25
38
55
74
85
93
104
125
130
138
147
160
169
173
180
199
205
209
222



1 Introduction

The software problem

Over the last 20 years hardware performance has increased by an order of
100. In the same period, software performance has increased only by an
order of 10. This is usually described as ‘the software problem’, ‘the
applications backlog’, ‘the software bottleneck’ or ‘the hardware-software
gap’ (Boehm,1981).

The software bottleneck is really the high-level representation of a whole
series of smaller problems:

1. Users cannot obtain applications when they want them. There is often a
delay of years

2.1t is difficult, if not impossible, to obtain changes to systems in a
reasonable amount of time

3. Systems have errors in them, or often do not work

4. Systems delivered do not match user requirements

5. Systems cost much more to develop and maintain than anticipated

Software engineering

Many solutions to these problems have been proposed. One of the most
influential, probably because it is the most comprehensive, has been to try
to cast software development as an engineering exercise.

Software engineering is the practical application of scientific knowledge
in the design and construction of computer programs and the associated
documentation required to develop, operate and maintain them. (Boehm,
1976)

This rather general definition captures the all-encompassing nature of the
term software engineering. Software engineering is an attempt to found the
entire project life-cycle in a systematic approach to software development.
The above definition, is however, somewhat vague. It contains at least
one term, namely ‘scientific knowledge’, which is subject to a number of
different interpretations. A more practical definition of software



2 Information Systems Development

engineering might therefore be:

The systematic application of an appropriate set of techniques to the
whole process of software development.

This definition concisely presents the three important principles of software
engineering:

1. A set of techniques is used to increase quality and productivity

2. The techniques are applied in a disciplined, not a haphazard, way

3. The techniques are applied to the whole process of software develop-
ment, that is, over the entire life-cycle of a project.

One of the important themes of software engineering is its emphasis on a
clear structure for software development. This is usually contrasted with
the traditional ad hoc approach to software development, an approach that
is seen as being the major contributory factor to the software problem.

Structured programming, design and analysis

In response to a dissatisfaction with the traditional ad hoc approach to
software development, three more rigorous areas of computing have been
developed (King, 1984):

1. Structured programming: the attempt to construct a disciplined pro-
gramming methodology based upon firm notions as to an appropriate
syntax for procedural programming languages. This was the emphasis
of the late 1960s and early 1970s in the computing world

2. Structured design: the discipline of building hierarchical systems of
modular software. This was the emphasis of the mid to late 1970s
(Yourdon and Constantine, 1979)

3. Structured analysis: an attempt to separate the logical from the phys-
ical description of information systems. The emphasis of the early
1980s (Weinberg, 1980).

These three areas, traditionally seen as sub-disciplines of software
engineering, have now become accepted practice within conventional
systems analysis and design. They correspond roughly to the three major
stages of the software development process: analysis, design and imple-
mentation.

This book concentrates on systems analysis and design. Because of the
interdependent nature of software development, however, we will necessarily
have to touch upon aspects outside this fuzzy domain. For instance, we will
discuss the context of information as an organisational resource, and some
of the tenets underlying the construction of well-designed programs.



The software development process

Introduction 3

Structured software development is usually seen as being made up of a
series of well-defined stages, with well-defined inputs to each stage, and
well-defined outputs from each stage (see figure 1.1).

l l Projects

Enhancements

Project
request
1.0 |
| Project
selection
Validated
project report
2.0
Feasibility ——m
study
Feasibility Amendments
report Changes
. Errors
3.0
70 |
Analysis ”
Review
User Operable
requirements system
4.0 ——
X 6.0
Design System
specification Evaluation
Software
5.0

Implementation

System documentation

Figure 1.1

In large organisations, there are usually a large number of requests for
applications systems. To handle such a diversity of applications formally,
most enterprises engage in some form of project selection process. The



4 Information Systems Development

purpose of such a selection process is to identify the most suitable
applications for development in terms of organisational objectives.

The primary mechanism of the project selection process is the project
selection committee. The project selection committee does not examine
each project in detail. This is the responsibility of the feasibility study.
Here, a systems analyst, or team of systems analysts, identifies the initial
framework for the application, and investigates whether it is feasible to
tackle the project given the available organisational resources. The end-
result of the feasibility study is the feasibility report. This is presented to
the relevant users who offer their opinions. These opinions may then be fed
back into the feasibility study which produces a revised report, and so on.

In a sense, the project selection process and the feasibility study are two
‘filters’ at the beginning of the development life-cycle. Project selection is a
coarse-grained filter. Its objective is to reject those projects which are
clearly unsuitable. The feasibility study is a fine-grained filter. Its objective
is to reject projects on more detailed grounds (see figure 1.2).

Project requests

cossse: | VLI

project selection

=l

L L " _' _] Finesieve: feasibility

study
l_. . Projects

for
development

Figure 1.2

Once the users are satisfied with the feasibility report, it is fed into the
definition phase. This is the systems analysis proper. The end-result of this
phase is the user specification or user requirements document. Elements
within the requirements document are continually reviewed with end-users
until they are satisfied that the requirements adequately describe their
needs.

The requirements document is a logical view of the proposed system.
This must be turned into a physical or implementable view of the system
through the process of design. The end-result of this design process, the
systems specification, is again reviewed with users until all interested
parties are happy with progress.

Once the completed design is ready, it is used to produce the application
system. Programmers are given specifications for the various modules of



Introduction 5

the system, and proceed to program them in the language and on the
hardware chosen for the implementation. Another important product of the
implementation phase is documentation which must fully describe the
system, both for technical staff, and for the end-user.

The system, once written and tested, must be subject to a critical
evaluation phase. This primarily means comparing the system produced
with elements of the requirements document to check that it has achieved
its aims.

Once the system is in operation, it is usually subject to a whole series of
user reviews. Such reviews usually generate a continuous series of further
project requests — amendments to the existing system, suggestions for new
systems etc,. which feed back again into the project selection process.

Software development is often referred to as a cycle for two major
reasons:

1.1t is subject to a whole series of small iterations surrounding the user
reviews, both within phases and between phases

2. A system is seldom 100 per cent complete. Users will continually want
errors in the system corrected, parts of the system changed, or major
extensions added. Software maintenance is therefore a critical factor
which should influence all aspects of the development process.

This ‘waterfall’, linear, or ‘loopy linear’ model of software development is
the one most often adhered to within the information systems development
community. Recently, however, a more iterative or incremental method of
systems development has been proposed. This participative approach, which
is usually called prototyping, or sometimes rapid prototyping, is considered
in Chapter 16 (Dearnley and Mayhew, 1983).

The major themes

Contemporary information systems development can thus be characterised
in terms of five major themes:

1. The emphasis on structure. That is, as we have already discussed, the
software development process is made up of a series of well-defined
procedures which act on well-defined inputs to produce well-defined
outputs. It is therefore a framework which constrains the software
development process in directions that have been shown to produce
better systems. For instance, it has been shown that clear and well-
considered structure lead to more maintainable systems (Yourdon, 79)

2.The emphasis on data. That systems analysis and design should



6 Information Systems Development

concentrate on data rather than process. This means that the prime area
of concern is the data needed to support organisational behaviour. The
procedures undertaken in any enterprise are seen to be by-products of,
or reliant upon, organisational data. This emphasis encourages a global
integrated view of organisational data

3. The emphasis on user and peer group participation. All stages of the
software development process are subject to some form of user and
peer group review. This is particularly important in the analysis and
design stages. User involvement has been proved to produce better
systems in terms of a closer match between user requirements and
finalised systems. Peer group reviews of the products of the develop-
ment process are a necessary validation mechanism (Yourdon, 78)

4. The emphasis on logical modelling. That is, the importance of building
an initial model of a system which is not tied to any specific implementa-
tion plan. In other words, structured systems analysis and design
enforces a necessary ‘fire-wall’ between the analysis and design stages
in development. Analysis involves primarily producing a documenta-
tion of user requirements. Design involves turning such requirements
into an implementable plan

5. The emphasis on graphical presentation. Most of the techniques used in
structured systems analysis and design are graphical in nature. This
results from the view that one of the major problems of traditional
software development is the problem of communication. A problem of
communication exists between the systems analyst and the end-user,
between the systems analyst and the programmer, and between the
systems analyst and management. Diagrams are a proven method of
enhancing communication; they are easier to understand by everyone
involved in the development of software. They are also easier to
manipulate, and represent information far more concisely than the
written page (Martin and McClare 1985).

Data-directed development

Structured systems analysis and design constitutes data-directed develop-
ment. Data-directed analysis and design emphasises two opposing but
complementary views of data: the dynamic view, and the static view.

1. The dynamic view emphasises the importance of data flow. That is,
how data moves through the system, and is transformed by the various
processes making up the information system.

2.The static view emphasises data structure. That is, how data is or
should be organised in a system in order to support organisational
processes.



Introduction 7

Two major techniques have been used to support these views: data flow
diagramming and entity-relationship (E-R) diagramming. These two
methods form the core of our discussion in the techniques section.

The other techniques to be discussed, such as data dictionaries, entity life
histories and structure charts, are really means for enhancing this dynamic
duo. For instance:

1. Datadictionaries are amethod of enhancing and extending the documenta-
tion of data flow.

2.Entity life histories are a method for connecting up the activities or
events represented on a set of data-flow diagrams with the entities on a
set of entity-relationship diagrams.

3. Structure charts are fundamentally a means for transforming a data-
flow diagram into something closer to a programmable structure — a
hierarchically organised set of program modules.

Databases and database management systems

Given the emphasis on data in modern information systems development it
is not surprising that perhaps the greatest influence on the approach in
recent years has been the development of databases and database manage-
ment systems. In particular, one database model has laid claim to supremacy,
at least in methodological terms. This is the relational database model to be
discussed in some detail in chapter 2. Without a basic understanding of this
model, the chapters on normalisation, E-R diagramming, and indeed the
whole question of information resource management cannot be properly
understood.

Insufficient improvements from structured techniques

As has been mentioned, the main hope for improving productivity over the
last two decades has been the application of structured techniques. Recently
however, it has been claimed that few installations have benefited from an
increase in productivity of greater than 50 per cent from the application of
structured techniques alone (Martin, 1984). This has led many people to
direct attention to a whole range of other issues which are considered to be
further sources of productivity enhancement.

In this book, we shall address a number of such issues. First, we shall
address the way in which relational databases and relational database
management systems (RDBMS) have not only influenced the application of



8 Information Systems Development

structured techniques, but are influencing the whole future development of
computing. Using RDBMSs as a core we shall then address a whole range
of environmental issues that are moulding the software development process.
For instance, we shall consider the use of prototyping, fourth-generation
languages (4GLs), integrated project support environments and knowledge
based systems. Each of these topics will be cross-referenced so that in the
concluding chapter we can make some sensible predictions as to the future
of the activities of systems analysis and design.

Information systems engineering

At the start of this chapter we described how software engineering has been
proposed as one of the most comprehensive solutions to the software
problem. In recent years, a yet more sophisticated solution called informa-
tion engineering or information systems engineering has been proposed:
(see for example Martin, 1984):

The term software engineering refers to the set of disciplines used for
specifying, designing and programming computer software. The term
information engineering refers to the set of interrelated disciplines which
are needed to build a computerised enterprise based on data systems. The
primary focus of information engineering is on the data that are stored
and maintained by computers and the information that is distilled from
these data. The primary focus of software engineering is the logic that is
used in computerised processes (Martin, 1984).

Information engineering builds itself on a number of premises:

1. That data lie at the centre of modern data processing.

2.That the types of, or structure of, data used in an organisation do not
change very much.

3.That given a collection of data, we can find an optimal way to
represent it logically.

4. That although data are relatively stable, the processes that use such
data change fast and frequently.

5. That because the basic data types are stable, whereas processes tend to
change, data-oriented techniques succeed if correctly applied where
process-oriented techniques have previously failed.

Although Martin tends to contrast information engineering with software
engineering, the author believes that it is more appropriate to cast informa-
tion engineering as an overarching discipline which encompasses not only
traditional software and systems engineering issues, but a global concern
with the management of information in organisations. This is more realistic



