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Preface

It is well-known that singular integrals is continuously regarded as a
central role in harmonic analysis. There are many nice books related to
singular integrals. In this book, there are at least two sides which differ from
the other books. One of them.is to establish more perfect theory of singular
integrals. It includes not only the case of smooth kernels, but also the case
of rough kernels. In the same way, we deal with some related operators, such
as fractional integral operators and Littlewood-Paley operators. The other
is to introduce more new theory on some oscillatory singular integrals with
polynomial phases. This book is mainly provided to graduate students in
analysis field. However, it is also beneficial to researchers in mathematics.

This book consists of five chapters. Let us now illustrate the choice
of material in each chapter. Chapter 1 is devoted to the theory of the
Hardy-Littlewood maximal operator as the basis of singular integrals and
other related operators. It also includes the basic theory of the A, weights.
Chapter 2 is related to the theory of singular integrals. Since the theory
of singular integrals with Calderén-Zygmund kernel has been introduced in
many books, we will pay more attention to the singular integrals with homo-
geneous kernels. Specially, we will introduce more perfect theory of singular
integrals with rough kernels, for instance the L? boundedness of singular
integrals with kernels in certain Hardy space on the unit sphere will be fully
proved. In addition, the weighted L? boundedness of singular integrals with
rough kernels and their commutators will be also established. Chapter 3 is
devoted to fractional integrals. In the same way, we will pay more attention
to the case of rough kernels. It includes not only the A(p, q) weight theory of
fractional integrals with rough kernels, but also the theory of its commuta-
tors. Chapter 4.is to introduce a class of oscillatory singular integrals with
polynomial phases. Note that this oscillatory singular integral is neither
a Calderén-Zygmund operator nor a convolution operator. However there
exists certain link between this oscillatory singular integral and the corre-
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sponding singular integral. Therefore, the criterion on the L? boundedness
of oscillatory singular integrals will become a crucial role in this chapter.
It will discover an equivalent relation between the LP boundedness of the
oscillatory singular integral and that of the corresponding truncated singu-
lar integral. Chapter 5 is related to the Littlewood-Paley theory. In this
chapter, we will establish two kinds of the weakest conditions on the kernel
for the LP boundedness of Marcinkiewicz integral operator with rough ker-
nel. Finally, it is worth pointing out that as space is limited, the theory of
singular integrals and related operators in this book is only worked on the
Lebesgue spaces although there are many good results on other spaces such
as Hardy spaces and BMO space.

It should be pointed out that many results in the later three chapters of
this book reflect the research accomplishment by the authors of this book
and their cooperators. We would like to acknowledge to Jiecheng Chen,
Dashan Fan, Yongsheng Han, Yingsheng Jiang, Chin-Cheng Lin, Guozhen
Lu, Yibiao Pan, Fernando Soria and Kozo Yabuta for their effective cooper-
ates in the study of singular integrals. On this occasion, the authors deeply
cherish the memory of Minde Cheng and Yongsheng Sun for their constant
encourage. The first named author of this book, Shanzhen Lu, would like
to express his thanks to his former students Wengu Chen, Yong Ding, Zun-
wei Fu, Yiqging Gui, Guoen Hu, Junfeng Li, Guoquan Li, Xiaochun Li, Yan
Lin, Heping Liu, Mingju Liu, Zhixin Liu, Zongguang Liu, Bolin Ma, Huixia
Mo, Lin Tang, Shuangping Tao, Huoxiong Wu, Qiang Wu, Xia Xia, Jingshi
Xu, Qingying Xue, Dunyan Yan, Dachun Yang, Pu Zhang, and Yan Zhang
for their cooperations and contributions to the study of harmonic analysis
during the joint working period. Finally, Shanzhen Lu would like to express
his deep gratitude to Guido Weiss for his constant encourage and help.

Shanzhen Lu
Yong Ding
Dunyan Yan

December, 2006
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Chapter 1

HARDY-LITTLEWOOD MAXIMAL
OPERATOR

1.1 Hardy-Littlewood maximal operator

Let us begin with giving the definition of the Hardy-Littlewood maximal
function, which plays a very important role in harmonic analysis.

Definition 1.1.1 (Hardy-Littlewood maximal function) Suppose that
[ is a locally integrable on R", i.e., f € L} (R™). Then for any z € R", the
Hardy-Littlewood mazimal function M f(z) of f is defined by

Mi@ =sip= [ |f(z-y)dy. (LL1)
r>0 T Jlyl<r

Moreover, M is also called as the Hardy-Littlewood mazimal operator.

Sometimes we need to use the following maximal functions. For f €
L} (R") and z € R",

M’ f(z) = sup

1
% Q@ Joen £ (v)ldy, (1.1.2)

where and below, Q(z,r) denotes the cube with the center at z and with
side r and its sides parallel to the coordinate axes. Moreover, |E| denotes

1



2 Chapter 1. HARDY-LITTLEWOOD MAXIMAL OPERATOR

the Lebesgue measure of the set E. More general,
1
M 1) = sup = [ 17w, (1.13)
Q3z |Q| Q

where the supremum is taken over all cubes or balls @) containing z.

For the. Hardy-Littlewood maximal operator M, we would like to give
the following some remarks.

Remark 1.1.1 By (1.1.1)-(1.1.8), it is easy to see that there exist constants
C; (1 =0,1,2,3) depending only on the dimension n such that

CoMf(z) < C1M'f(z) < CaM" f(z) < CsMf(z) (1.1.4)

for any x € R™. That is, the Hardy-Littlewood mazimal function M f of f
and the mazimal functions M'f, M" f are pointwise equivalent each other.

Remark 1.1.2 For f € L} (R"), the Hardy-Littlewood mazimal function
M f(z) is a lower semi-continuous function on R™, and is then a measurable
function on R™.

By (1.1.4), we only need to show it for M’ f(z). In fact, it is sufficient to
show that for any A € R, the set E = {x € R™ : M’ f(z) > A} is an open set.
However, by the definition of M' f(x) it suffices to show that E is open for all
X > 0. Equivalently, we only need to show that E°:= {z € R™ : M'f(z) < A}
is a closed set for all X > 0. - -

Suppose that {x;} C E° satisfying zx — z as k — co. We only need to
show that for any r >0

1
lQ(xa T')l Q(z,r)

Denote Qk = Q(xk,'l') and fk(y) = f(y)XQ(z,r)AQk (y) fOT alk = 1’2’ Tt

where
Q(z,")AQk = (Qlz,)\@Qx) | (@x\Q(z,7)).

|f @)ldy < A. (1.1.5)

Thus,
k@ <17 ()] forall k and lim fi(y) =0.

Applying the Lebesgue dominated convergence theorem, we have

1

klin;m o) |fe(y)ldy = 0. (1.1.6)
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On the other hand, it is clear that

! 1
e Jo, 10y = g [ 17y <2

Hence

1

|Q($1T)I Q(z,r)lf(y)ldy

1
— d
<0G Joenag, TV

+m o |f (¥)ldy

< T ey, eI+

Let k — oo, by (1.1.6) we obtain (1.1.5).

Remark 1.1.3 The Hardy-Littlewood mazimal operator M is not a bounded
operator from L1(R™) to itself.

We only consider the case n = 1. Take f(x) = x[o,1)(2), then for any
x> 1, we have

1 (%= 1
Mf@)2 5 jo @)y = o

Hence
o0 00 1
[Mf(x)dz?_/ Mf(:x:)dmz/ L i = co.
R 1 1 2z
Although M is not a bounded operator on L'(R™), however, as its a re-

placement result we shall see that M is a bounded operator from L}(R") to
LY®(R™), i.e., the weak L'(R™) space (see Definition 1.1.2 below).

Lemma 1.1.1 (Vitali type covering lemma) Let E be a measurable
subset of R"™ and let B be a collection of balls B with bounded diameter d(B)
covering E in Vitali’s sense, i.e. for any x € E there erist a ball B, € B
such that x € B,. Then there ezist a B > 0 depending only on n, and disjoint
countable balls By, By, -+ ,By,--- in B such that

Y IBil > BIEL.
k
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In fact, it will be seen from the proof below that it suffices to take 8 = 5~™.
Proof. Denote ¢, = sup{d(B) : B € B} < co. Take B; € B so that
d(B1) > 1. Again denote B = {B : B € B and BN B; = 0} and
& = sup{d(B) : B € B,}, then we choose B; € B such that d(Bp) > 1¢,.

Suppose that By, By, , By have been chosen from B according to the
above way, then we denote

Bk={B:BeB with Bﬂ(OB,-) =0}

=1

and
¢, = sup{d(B) : B € B;}.

Next we choose Bgyy € B such that d(Bgy) > %Zk. Thus we may choose
a sequence B;, B;,- -, from B such that

(i) By,Ba, -+ ,Bg, - are disjoint;
(i) d(Bes) > hsup{d(B) : B € By}, and

Bk={B:BeB and Bﬂ(OBJ-) =m}

j=1
fork=1,2,---.

If this process stops at some By, then it shows that By = #. In this case, for
any z € E there exists a ball B, € B such that z € B, and B, N By, # 0
with some 1 < kp < k. Without loss of generality, we may assume that
B:NBj=0for j=1,2,-- ko — 1. So, d(By,) > 3d(B;), and this implies
B, C 5B,, where 5By, expresses the five times extension of By, with the
same center. Thus, we have E C U§=1 5B;, and it leads to

k
|J5B;

j=1

k k
|E| < <Y I5Bjl <5 |Bjl.

On the other hand, it is trivial when Z;";l | Bl = 0. So, we may assume
that 372, | Bk} < co. Denote Bj = 5B;. We will claim that

[e ]
Ec|JB:. (1.1.7)
k=1
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In fact, it suffices to prove that B C (J;2, B; for any B € B. Since
Y721 1Bkl < oo, we have d(Bi) — 0 as k — oo. Thus there exists ko
such that d(By,) < %d(B). Of course, we may think that the index ko is
the smallest with the above property. In this case, B, must intersect with
some Bj for 1 < j < ko — 1. Otherwise, d(Bg,) > %d(B,). As before, we get
B, C 5B; = B; and (1.1.7) follows. Thus

[o ] oo [+ 2]
UB| < IBi<5 Y B
k=1 k=1 k=1

This completes the proof. (]

|E| <

Definition 1.1.2 (Weak L? spaces) Suppose that 1 <p < oc and f is a
measurable function on R™. The function f is said to belong to the weak LP
spaces on R", if there is a constant C > 0 such that

sup Al{z € R™: |f(z)| > A}V? < C < .
A>0

In other words, the weak LP(R"™) is defined by
LPPRY) = {f: |fllpoo < 00},

where
1fllpo := sup M{z € R : |f(2)] > AHMP

denotes the seminorm of f in the weak LP(R™).
Remark 1.1.4 It is easy to verify that for 1 < p < oo, LP(R") & LP*°(R").

Definition 1.1.3 (Operator of type (p, q)) Suppose that T is a sublinear
operator and 1 < p, q¢ < 00. T is said to be of weak type (p,q) if T is a
bounded operator from LP(R™) to LY°(R™). That is, there exists a constant
C > 0 such that for any A > 0 and f € LP(R")

te e R 27 > M1 < (i) (1.18)

T is said to be of type (p,q) if T is a bounded operator from LP(R") to
LI(R™). That is, there exists a constant C > 0 such that for any f € LP(R™)

IT£llq < Clfllps (1.1.9)
where and below, ||fllp = || fllLom~) denotes the LP norm of f(z).
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When p = ¢ and the operator T satisfies (1.1.8) or (1.1.9), T is also said
to be of weak type (p,p), respectively. Moreover, It is easy to see that an
operator of type (p, q) is also of weak type (p,q), but its reverse is not hold
generally.
Below we shall prove that the Hardy-Littlewood maximal operator M is
of weak type (1,1) and type (p,p) for 1 < p < oo, respectively.
Theorem 1.1.1 Let f be a measurable function on R™.
(a) If f € LP(R™) for 1 <p < o0, then Mf(z) < o0 a.e. z € R™.
(b) There exzists a constant C = C(n) > 0 such that for any A > 0 and
fe 'R
C
o € R": Mf(z) > A}l < Sl
(c) There exists a constant C = C(n,p) > 0 such that for any f €
LP(R™) 1 < p< oo, [Mfllp < Clifllp-

Proof. Obviously, the conclusion (a) is a direct result of the conclusions
(b) and (c). Hence we only give the proof of (b) and (c).
Let us first consider (b). For any A > 0, by Remark 1.1.1 the set

Ey:={zeR": Mf(z) > )}

is an open set, and is then a measurable set. By Definition 1.1.1, for any
z € E), there exists a ball B, with the center at z such that

ﬁjz—] /B F@)ldy > A

Thus
1 1
1Bl < 5 [ 1700y < 5171 < oo for all 2 € B,

Therefore, if we denote B = {B; : z € E,}, then B covers E) in Vitali’s
sense. By Lemma 1.1.1, we may choose disjoint countable balls By, By, -- - ,
Bg,- -+ in B such that

Y 1Bil 2 BIE.
k

Hence

1
BIEAIS ) 1Bl <3 |/ (v)ldy
ep <,

3, 5 @
< X”f”l-
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Let us now turn to the proof of (c). Clearly, the conclusion (c) holds for
p = 00, we only consider the case 1 < p < 00. Let f € LP(R") (1 < p < o0).
For any A > 0, write f = f; + fo, where

fiy < [ 1@ for @122
! 0, for |f(z)| < \/2.
It is easy to see that f) € L!(R"). Thus we have
F@I<IA@I+S ad Mi@<MA@+5.  (1110)

Hence, by (1.1.10) and the weak (1,1) boundedness of M (i.e. the conclusion
(b)), we have
|EAl = [{z € R® : Mf(z) > A}|
<|{z e R*: Mfi(z) > A/2}]
<2 [ 1@l
R”

-
A J{zern: |f()12)/2)
where [ is the constant in Lemma 1.1.1. Therefore

/ (M f(z))Pds
Rﬂ-

00
=p [ #liEM A
0

00
<p Ap'l(gﬁ / |f(x)|dx)dA
0 A Jizerr: |f(z)i2A/2}

2| f(=)}
<2p [ 11(a) ( / A"‘2dA)dz
_ 28p
= p_—_l/m | (z)IP dz.

Thus we finish the proof of Theorem 1.1.1.

Immediately, by the weak (1,1) boundedness of the Hardy-Littlewood
maximal operator M we may get the Lebesgue differentiation theorem.

|f ()| dz,

Theorem 1.1.2 (Lebesgue differentiation theorem ) Suppose that f €
L} .(R"™). Then
! 1

im ———— dy = f(z) a.e z€R®?
lo B B(w)f(y) y = f(z)
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where B(z,r) denotes the ball with the center at x and radius r.

Proof.  Since for any R > 0, fxp,r € L'(R"), we may assume that
f € L(R™). Denote

1
LN = B fyeny TV
and let L
A((&) = TBL(H@) - lim Le(f)(z).
Then

A(f) (=) < 231;13 |Lr (f)(@)| = 2M f(=).
Let us first show that for any A > 0
|Ex(Af)| == |[{x e R® : A(f)(z) > A}| = 0. (1.1.11)

In fact, for any € > 0 we may decompose f = g+ h, where g is a continuous
function with compact support set and ||h||; < £. Thus

A(f)(=) < Ag)(z) + A(h)(z) = A(R)(2),

and it leads to
|Ex(Af)| < |Ex(AR)| £ |Exja(ME)|.

By Theorem 1.1.1 (b), we have

IExAD] < XAl < 5.

Thus, by the arbitrariness of £ we know (1.1.11) holds, and (1.1.11) shows
that the limit hm L.(f)(z) exists for a.e. z € R™.

On the other hand by the integral continuity, we have
lim 1L,(7) - fl

— lim / _1
r—0 Jgn ||B(z,7)] B(z,r)
_ 1

-t [ 1B, )]

[ @=- fehis
B(0,r)

1 _
< B T o oo 9~ F(@lzdy =0

f(y)dy — f(z)|dz
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Hence there exists a subsequence {r;} satisfying r, — 0 as k — o0, such
that

klingo L, (f)(z) = f(z) for ae. ze€R"

Because }13(1) L.(f)(z) exists for a.e. £ € R™, thus

1

lim ——— dy= f(z) ae ze€R"
P IB@ ] Jaguy /DW= 2o 2

which is the desired conclusion. [ |

Remark 1.1.5 Clearly, by the equivalence of (i.1.1) - (1.1.3), it is easy
to see that the conclusion of Theorem 1.1.2 still holds if we replace the ball
B(z,r) by cube Q(z,r), even more generally, by a cube Q containing z.

1.2 Calderén-Zygmund decomposition

Applying Lebesgue differentiation theorem, we may give a decomposition of
R™, called as Calderén-Zygmund decomposition, which is extremely useful
in harmonic analysis.

Theorem 1.2.1 (Calderén-Zygmund decomposition of R™) Suppose
that f is nonnegative integrable on R™. Then for any fized A > 0, there
erists a sequence {Q;} of disjoint dyadic cubes (here by disjoint we mean
that their interiors are disjoint) such that

(1) £() <A for ae. o ¢ U; Qs

@ [Uas| < >l
J

(3) A< /Q. f(@)dz < 2°2.

1
1Qj1

Proof. By f € L}(R"), we may decompose R™ into a net of equal cubes
with whose interiors are disjoint such that for every @ in the net

1
'—Q—l/c;f(z)dzs "
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Let ' be any fixed cube in the net. We divide it into 2" equal cubes, and
denote Q" is one of these cubes. Then there are the follwing two cases.

Case (i) .
l—QT,|/C;”f(z)dx > A

ﬁ/qﬂf(z)dz <A

Case (ii)

In the case (i) we have

1 1 .
)‘<W“/Q”f(x)d$SZ—_TQ,‘|/QIf(z)sz2 A

Hence, we do not sub-divide Q" any further, and Q" is chosen as one of the
) y

sequence {Q;}.
For the case (ii) we continuously sub-divide Q" into 2" equal subcubes,

and repeat this process until we are forced into the case (i). Thus we get a
sequence {Q;} of cubes obtained from the case (i). By Theorem 1.1.2,

flz)= gg; Ial-/f(z)d:rgz\ for a.e. :1:¢UQJ-.
el— j

This proves the theorem.
Remark 1.2.1 In place of R™ by a fized cube Qq, we may similarly discuss

the Calderdn-Zygmund decomposition on Qg for f € L'(Qo) and A > 0.
Moreover, we also may obtain the similar decomposition for f € LP(R™) (p >

1).

An application of the Calderén-Zygmund decomposition on R™ is that it
may be used to give the L! boundedness of the Hardy-Littlewood maximal
operator M in some sense. More precisely, we have the following conclusion.

Theorem 1.2.2 Suppose that f € L1(R").

oF
| r@log* 1@ < oo,

then M f € L}, .(R™).



