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Introduction

For tens of thousands of years the human race used their muscles and the labor of animals
to build a world that differed little from that known by all their ancestors. But in 1776
James Watt installed the first of his improved steam engines in a commercial enterprise,
kicking off the industrial revolution.

The 1800s were known as “the great age of the engineer.” Engineers were viewed as the
celebrities of the age, as the architects of tomorrow, the great hope for civilization. (For a
wonderful description of these times read Isamard Kingdom Brunel, by L.T.C. Rolt.) Yet
during that century, one of every four bridges failed. Tunnels routinely flooded.

How things have changed!

Our successes at transforming the world brought stink and smog, factories weeping
poisons, and landfills overflowing with products made obsolete in the course of months.
The Challenger explosion destroyed many people’s faith in complex technology (which
shows just how little understanding Americans have of complexity). An odd resurgence
of the worship of the primitive is directly at odds with the profession we embrace.
Declining test scores and an urge to make a lot of money now have caused drastic
declines in US engineering enrollments.

To paraphrase Rodney Dangerfield: “We just can’t get no respect.”

It’s my belief that this attitude stems from a fundamental misunderstanding of what an
engineer is. We’re not scientists, trying to gain a new understanding of the nature of the
universe. Engineers are the world’s problem solvers. We convert dreams to reality. We
bridge the gap between pure researchers and consumers.
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Problem solving is surely a noble profession, something of importance and fundamental
to the future viability of a complex society. Suppose our leaders were as single-
mindedly dedicated to problem solving as is any engineer: we’d have effective schools,
low taxation, and cities of light and growth rather than decay. Perhaps too many of us
engineers lack the social nuances to effectively orchestrate political change, but there’s
no doubt that our training in problem solving is ultimately the only hope for dealing with
the ecological, financial, and political crises coming in the next generation.

My background is in the embedded tool business. For two decades I designed, built, sold,
and supported development tools, working with thousands of companies, all of which
were struggling to get an embedded product out the door, on-time, and on-budget. Few
succeeded. In almost all cases, when the widget was finally complete (more or less;
maintenance seems to go on forever due to poor quality), months or even years late, the
engineers took maybe 5 seconds to catch their breath and then started on yet another
project. Rare was the individual who, after a year on a project, sat and thought about what
went right and wrong on the project. Even rarer were the people who engaged in any sort
of process improvement, of learning new engineering techniques and applying them to
their efforts. Sure, everyone learns new tools (say, for ASIC and FPGA design), but few
understood that it’s just as important to build an effective way to design products as it is
to build the product. We’re not applying our problem-solving skills to the way we work.

In the tool business I discovered a surprising fact: most embedded developers work more
or less in isolation. They may be loners designing all of the products for a company,

or members of a company’s design team. The loner and the team are removed from
others in the industry and so develop their own generally dysfunctional habits that go
forever uncorrected. Few developers or teams ever participate in industry-wide events or
communicate with the rest of the industry. We, who invented the communications age,
seem to be incapable of using it!

One effect of this isolation is a hardening of the development arteries: we are unable to
benefit from others’ experiences, so work ever harder without getting smarter. Another is a
feeling of frustration, of thinking “what is wrong with us; why are our projects so much more
a problem than anyone else’s?” In fact, most embedded developers are in the same boat.

This book comes from seeing how we all share the same problems while not finding
solutions. Never forget that engineering is about solving problems ... including the ones
that plague the way we engineer!
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Engineering is the process of making choices; make sure yours reflect simplicity,
common sense, and a structure with growth, elegance, and flexibility, with debugging
opportunities built in. '

How many of us designing microprocessor-based products can explain our jobs at a
cocktail party? To the average consumer the word “computer” conjures up images of
mainframes or PCs. He blithely disregards or is perhaps unaware of the tremendous
number of little processors that are such an important part of everyone’s daily lives. He
wakes up to the sound of a computer-generated alarm, eats a breakfast prepared with a
digital microwave, and drives to work in a car with a virtual dashboard. Perhaps a bit
fearful of new technology, he’ll tell anyone who cares to listen that a pencil is just fine
for writing, thank you; computers are just too complicated.

So many products that we take for granted simply couldn’t exist without an embedded
computer! Thousands owe their lives to sophisticated biomedical instruments like CAT
scanners, implanted heart monitors, and sonograms. Ships as well as pleasure vessels
navigate by GPS that torturously iterate non-linear position equations. State-of-the-art
DSP chips in traffic radar detectors attempt to thwart the police, playing a high tech

cat and mouse game with the computer in the authority’s radar gun. Compact disc
players give perfect sound reproduction using high integration devices that provide error
correction and accurate track seeking.

It seems somehow appropriate that, like molecules and bacteria, we disregard computers
in our day-to-day lives. The microprocessor has become part of the underlying fabric

of late 20th century civilization. Our lives are being subtly changed by the incessant
information processing that surrounds us.

Microprocessors offer far more than minor conveniences like TV remote control. One
ultimately crucial application is reduced consumption of limited natural resources. Smart
furnaces use solar input and varying user demands to efficiently maintain comfortable
temperatures. Think of it—a fleck of silicon saving mountains of coal! Inexpensive
programmable sprinklers make off-peak water use convenient, reducing consumption

by turning the faucet off even when forgetful humans are occupied elsewhere. Most
industrial processes rely on some sort of computer control to optimize energy use and to
meet EPA discharge restrictions. Electric motors are estimated to use some 50% of all
electricity produced—cheap motor controllers that net even tiny efficiency improvements
can yield huge power savings. Short of whole new technologies that don’t yet exist,
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smart, computationally intense use of resources may offer us the biggest near-term
improvements in the environment.

What is this technology that so changed the nature of the electronics industry?
Programming the VCR or starting the microwave you invoke the assistance of an
embedded microprocessor—a computer built right into the product.

Embedded microprocessor applications all share one common trait: the end product is not
a computer. The user may not realize that a computer is included; certainly no 3-year-old
knows or cares that a processor drives Speak and Spell. The teenager watching MTV is
unaware that embedded computers control the cable box and the television. Mrs. Jones,
gossiping long distance, probably made the call with the help of an embedded controller
in her phone. Even the “power” computer user may not know that the PC is really a
collection of processors; the keyboard, mouse, and printer each include at least one
embedded microprocessor.

For the purpose of this book, an embedded system is any application where a dedicated
computer is built right into the system. While this definition can apply even to major
weapon systems based on embedded blade servers, here I address the perhaps less
glamorous but certainly much more common applications using 8-, 16-, and 32-bit
processors.

Although the microprocessor was not explicitly invented to fulfill a demand for cheap
general purpose computing, in hindsight it is apparent that an insatiable demand for some
amount of computational power sparked its development. In 1970 the minicomputer was
being harnessed in thousands of applications that needed a digital controller, but its high
cost restricted it to large industrial processes and laboratories. The microprocessor almost
immediately reduced computer costs by a factor of a thousand. Some designers saw an
opportunity to replace complex logic with a cheap 8051 or Z80. Others realized that their
products could perform more complex functions and offer more features with the addition
of these silicon marvels.

This, then, is the embedded systems industry. In two decades we’ve seen the
microprocessor proliferate into virtually every piece of electronic equipment. The
demand for new applications is accelerating.

The goal of the book is to offer approaches to dealing with common embedded
programming problems. While all college computer science courses teach traditional
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programming, few deal with the peculiar problems of embedded systems. As always,
schools simply cannot keep up with the pace of technology. Again and again we see new
programmers totally baffled by the interdisciplinary nature of this business. For there

is often no clear distinction between the hardware and software; the software in many
cases is an extension of the hardware; hardware components are replaced by software-
controlled algorithms. Many embedded systems are real time—the software must respond
to an external event in some number of microseconds and no more. We’ll address many
design issues that are traditionally considered to be the exclusive domain of hardware
gurus. The software and hardware are so intertwined that the performance of both is
crucial to a useful system; sometimes programming decisions profoundly influence
hardware selection. '

Historically, embedded systems were programmed by hardware designers, since only they
understood the detailed bits and bytes of their latest creation. With the paradigm of the
microprocessor as a controller, it was natural for the digital engineer to design as well as
code a simple sequencer. Unfortunately, most hardware people were not trained in design
methodologies, data structures, and structured programming. The result: many early
microprocessor-based products were built on thousands of lines of devilishly complicated
spaghetti code. The systems were un-maintainable, sometimes driving companies out of
business.

The increasing complexity of embedded systems implies that we’ll see a corresponding
increase in specialization of function in the design team. Perhaps a new class of firmware
engineers will fill the place between hardware designers and traditional programmers.
Regardless, programmers developing embedded code will always have to have detailed
knowledge of both software and hardware aspects of the system.






The Project

2.1 Partitioning

In 1946 programmers created software for the ENIAC machine by rewiring plug-boards.
Two years later the University of Manchester’s Small-Scale Experimental Machine,
nicknamed Baby, implemented von Neumann’s stored program concept, for the first

time supporting a machine language. Assembly language soon became available and
flourished. But in 1957 Fortran, the first high level language, debuted and forever changed
the nature of programming.

In 1964, Dartmouth BASIC introduced millions of non-techies to the wonders of
computing while forever poisoning their programming skills. Three years later, almost as
a counterpoint, OOP (object-oriented programming) appeared in the guise of Simula 67.
C, still the standard for embedded development, and C++ appeared in 1969 and 1985,
respectively.

By the 1990s, a revolt against big, up-front design led to a flood of new “agile”
programming methodologies including eXtreme Programming, SCRUM, Test-Driven
Development, Feature-Driven Development, the Rational Unified Process, and dozens
more.

In the 50 years since programming first appeared, software engineering has morphed

to something that would be utterly alien to the software developer of 1946. That half-
century has taught us a few pivotal lessons about building programs. Pundits might
argue that the most important might be the elimination of “gotos,” the use of objects, or
building from patterns.
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They’d be wrong. The fundamental insight of software engineering is to keep things
small. Break big problems into little ones.

For instance, we understand beyond a shadow of a doubt the need to minimize function
sizes. No one is smart enough to understand, debug, and maintain a 1000-line routine,
at least not in an efficient manner. Consequently, we’ve learned to limit our functions to
around 50 lines of code. Reams of data prove that restricting functions to a page of code
or less reduces bug rates and increases productivity.

But why is partitioning so important?

A person’s short-term memory is rather like cache—a tiny cache—actually, one that
can hold only 5-9 things before new data flushes the old. Big functions blow the

programmer’s mental cache. The programmer can no longer totally understand the code;
errors proliferate.

2.1.1 The Productivity Crash

But there’s a more insidious problem. Developers working on large systems and
subsystems are much less productive than those building tiny applications.

Consider the data in Table 2.1, gathered from a survey [1] of IBM software projects.
Programmer productivity plummets by an order of magnitude as projects grow in scope!

That is, of course, exactly the opposite of what the boss is demanding, usually quite
loudly.

The growth in communications channels between team members sinks productivity on
large projects. A small application, one built entirely by a single developer, requires zero
comm channels—it’s all in the solo guru’s head. Two engineers need only one channel.

Table 2.1: IBM productivity in lines of code per
programmer per month

Project size man/months | Productivity lines of code/month

1 439
10 220
100 110

1000 55
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The number of communications channels between n engineers is:
n(n—1)
2

This means that communications among team members grow at a rate similar to the
square of the number of developers. Add more people and pretty soon their days are
completely consumed with email, reports, meetings, and memos (Figure 2.1).

Fred Brooks in his seminal (and hugely entertaining) work [2] “The Mythical Man-
Month” described how the IBM 360/0S project grew from a projected staffing level of
150 people to over 1000 developers, all furiously generating memos, reports, and the
occasional bit of code. In 1975, he formulated Brooks’ Law, which states: adding people
to a late project makes it later. Death-march programming projects continue to confirm
this maxim, yet management still tosses workers onto troubled systems in the mistaken
belief that an N man-month project can be completed in 4 weeks by N programmers.

Is it any wonder some 80% of embedded systems are delivered late?

Table 2.2 illustrates Joel Aron’s [2] findings at IBM. Programmer productivity plummets
on big systems, mostly because of interactions required between team members.

The holy grail of computer science is to understand and ultimately optimize software
productivity. Tom DeMarco and Timothy Lister [3] spent a decade on this noble quest,
running a yearly “coding war” among some 600 organizations. Two independent teams

300
250
200
150

100

Comm channels

50

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of people

Figure 2.1: The growth in comm channels with people
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at each company wrote programs to solve a problem posited by the researchers. The
resulting scatter plot looked like a random cloud; there were no obvious correlations
between productivity (or even bug rates) and any of the usual suspects: experience,
programming language used, salary, etc. Oddly, at any individual outfit the two teams
scored about the same, suggesting some institutional factor that contributed to highly—
and poorly—performing developers.

A lot of statistical head-scratching went unrewarded till the researchers reorganized the
data as shown in Table 2.3.

The results? The top 25% were 260% more productive than the bottom quartile!

The lesson here is that interruptions kill software productivity, mirroring Joel Aron’s
results. Other work has shown it takes the typical developer 15 minutes to get into a
state of “flow,” where furiously typing fingers create a wide-bandwidth link between
the programmer’s brain and the computer. Disturb that concentration via an interruption
and the link fails. It takes 15 minutes to rebuild that link but, on average, developers are
interrupted every 11 minutes [4].

Interrupts are the scourge of big projects.

Table 2.2: Productivity plummets as
interactions increase

Interactions Productivity

Very few interactions 10,000 LOC/man-year
Some interactions 5000 LOC/man-year
Many interactions 1500 LOC/man-year

Table 2.3: Coding war results

1st Quartile 4th Quartile
Dedicated workspace 78 sq ft 46 sq ft
Is it quiet? 57% yes 29% yes
Is it private? 62% yes 19% yes
Can you turn off phone? 52% yes 10% yes
Can you divert your calls? 76% yes 19% yes
Frequent interruptions? 38% yes 76% yes




