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Preface

This is the first volume of a two-volume textbook' which evolved from a
course (Mathematics 160) offered at the California Institute of Technology
during the last 25 years. It provides an introduction to analytic number
theory suitable for undergraduates with some background in advanced
calculus, but with no previous knowledge of number theory. Actually, a
great deal of the book requires no caiculus at all and could profitably be
studied by sophisticated high school students.

Number theory is such a vast and rich field that a one-year course cannot
do justice to all its parts. The choice of topics included here is intended to
provide some variety and some depth. Problems which have fascinated
generations of professional and amateur mathematicians are discussed
together with some of the techniques for solving them.

One of the goals of this course has been to nurture the intrinsic interest
that many young mathematics students seem to have in number theory and
to open some doors for them to the current periodical literature. It has been
gratifying to note that many of the students who have taken this course
during the past 25 years have become professional mathematicians, and some
have made notable contributions of their own to number theory. To all of
them this book is dedicated.

' The second volume is scheduled to appear in the Springer-Verlag Series Graduate Texts in
Mathematics under the title Modular Functions and Dirichlet Series in Mumber Theory.
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Historical Introduction

The theory of numbers is that branch of mathematics which deals with
properties of the whole numbers,

1,2,3,4,5,...

also called the counting numbers, or positive integers.

The positive integers are undoubtedly man’s first mathematical creation.
It is hardly possible to imagine human beings without the ability to count,
at least within a hmited range. Historical record shows that as early as
3500 BC the ancient Sumerians kept a calendar, so they must have developed
some form of arithmetic.

By 2500 BC the Sumerians had developed a number system using 60 as a
base. This was passed on to the Babylonians, who became highly skilled
calculators. Babylonian clay tablets containing elaborate mathematical
tables have been found, dating back to 2000 Bc.

When ancient civilizations reached a level which provided leisure time
to ponder about things, some people began to speculate about the nature and
properties of numbers. This curiosity developed into a sort of number-
mysticism or numerology, and even today numbers such as 3,7, 11, and 13
are considered omens of good or bad luck.

Numbers were used for keeping records and for commercial transactions
for over 2000 years before anyone thought of studying numbers themselves
in a systematic way. The first scientific approach to the study of integers,
that is, the true origin of the theory of numbers, is generally attributed to the
Greeks. Around 600 BC Pythagoras and his disciples made rather thorough
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Historical introduction

studies of the integers. They were the first to classify integers in various ways:

Even numbers: 2,4,6,8, 10,12, 14,16, ...

Odd numbers: 1,3,5,7,9, 11, 13,15, ...

Prime numbers: 2,3,5,7, 11, 13,17, 19, 23, 29, 31. 37, 41, 43, 47, 53, 59, 61,
67,71,73,79, 83,89,97, ...

Composite numbers: 4,6,8,9, 10, 12, 14, 15, 16, 18, 20, ...

A prime number is a number greater than 1 whose only divisors are 1 and
the number itself. Numbers that are not prime are called composite, except
that the number 1 is considered neither prime nor composite.

The Pythagoreans also linked numbers with geometry. They introduced
the idea of polygonal numbers: triangular numbers, square numbers, pen-
tagonal numbers, etc. The reason for this geometrical nomenclature is
clear when the numbers are represented by dots arranged in the form of
triangles, squares, pentagons, etc., as shown in Figure 1.1.

Triangular: &
A A A
[ 10 15 21 2

1 3 8

. O nar !

6 25 36 49 L.
Pentagonal. @ @
. Q @
12 22 35 St 70 .

| 5

H
0

Figure 1.1

Another link with geometry came from the famous Theorem of Pythagoras
which states that in any right triangle the square of the length of the hy-
potenuse is the sum of the squares of the lengths of the two legs (see Figure [.2).
The Pythagoreans were interested in right triangles whose sides are integers,
as in Figure 1.3. Such triangles are now called Pythagorean triangles. The
corresponding triple of numbers (x, y, z) representing the lengths of the sides
is called a Pythagorean triple.

2



Historical introduction

rd
y xlaypl=zz?

X

Figure 1.2

A Babylonian tablet has been found, dating from about 1700 BC, which
contains an extensive list of Pythagorean triples, some of the numbers being

quite large. The Pythagoreans were the first to give a method for determining
infinitely many triples. In modern notation it can be described as follows:
Let n be any odd number greater than 1, and let

x=n y=¥n?-1), z=3in*+1.

The resulting triple (x, y, z) will always be a Pythagorean triple with z = y
+ 1. Here are some examples:

x 3 5 7 9 11 13 15 17 19

y 4 12 24 40 60 84 112 144 180

z 5 13 25 41 61 85 113 145 18i
There are other Pythagorean triples besides these; for example:

x 8 12 16 20

y 15 35 63 99

z 17 37 65 101

In these examples we have z = y + 2. Plato (430-349 Bc) found a method for
determining all these triples; in modern notation they are given by the
formulas

x = 4n, = 4n? — 1, z=14n%* + 1.
y

Around 300 BC an important event occurred in the history of mathematics.
The appearance of Euclid’s Elements, a collection of 13 books, transformed
mathematics from numerology into a deductive science. Euclid was the
first to present mathematical facts along with rigorous proofs of these facts.

5 N
3 32442:¢2 5{\5‘*'21;"32

4 12

Figure 1.3



Historical introduction

Three of the thirteen books were devoted to the theory of numbers (Books V11,
IX, and X). In Book IX Euclid proved that there are infinitely many primes.
His proof is still taught in the classroom today. In Book X he gave a method
for obtaining all Pythagorean triples although he gave no proof that his
method did, indeed, give them all. The method can be summarized by the
formulas

x = t{a® — b?), y = 2tab, z = tl@® + b?),

where t, a, and b, are arbitrary positive integers such that a > b, a and b have
no prime factors in common, and one of a or b is odd, the other even.

Euclid also made an important contribution to another problem posed
by the Pythagoreans—that of finding all perfect numbers. The number 6
was called a perfect number because 6 = 1 + 2 + 3, the sum of all its proper
divisors (that is, the sum of all divisors less than 6). Another example of a
perfect number i1s 28 because 28 = | + 2 + 4 + 7 + 14,and 1, 2, 4, 7, and
14 are the divisors of 28 less than 28. The Greeks referred to the proper
divisors of a number as its “parts.” They called 6 and 28 perfect numbers
because in each case the number is equal to the sum of all its parts.

In Book IX, Euclid found all even perfect numbers. He proved that an
even number is perfect if it has the form

277 H2P — 1),
where both p and 27 — 1 are primes.
Two thousand years later, Euler proved the converse of Euclid's theorem.

That is, every even perfect number must be of Euclid’s type. For example, for
6 and 28 we have

6=27"'2"-1)=2-3 and28=2>"'2°-1)=4.7
The first five even perfect numbers are
6, 28, 496, 8128 and 33,550,336.

Perfect numbers are very rare indeed. At the present time (1983) only 29
perfect numbers are known. They correspond to the following values of p
in Euchd’s formula:

2,3,5,7,13,17,19, 31, 61, 89, 107, 127, 521, 607, 1279. 2203, 2281,
3217, 4253, 4423, 9689, 9941, 11,213, 19,937, 21,701, 23,209, 44,497,
86,243, 132,049

Numbers of the form 27 — |, where p is prime, are now called Mersenne
numbers and are denoted by M, in honor of Mersenne, who studied them in
1644. It 1s known that M, is prime for the 29 primes listed above and com-
posite for all values of p < 44,497. For the following primes,

p = 137,139, 149, 199, 227, 257

although M is composite, no prime factor of M, is known.
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