Uriel Frisch

Turbulence

.

i Unit cube
Vi

~ 0-D object

- Volume o< ¢ /i
2-D object \

VOIUme o




TURBULENCE

THE LEGACY OF A.N. KOLMOGOROYV

\
URIEL FRISCH

Observatoire de la Cote d’Azur

K CAMBRIDGE

@59 UNIVERSITY PRESS




EHERKE (CIP) #HiRE

#i#7 = Geometry: Euclid and Beyond: #3(/
(&) #HEA (Frsch, U ) #F. YA,
—Jbat: HRE BB RA R AR, 20113

ISBN 978-7-5100-3294-3

I. Q-
IV. D0357. 5

I. O . ORE—TE—%RX

o AR AS PR A5 6R CIP Fdiedx s (2011) %5 029544 5

=1 % Turbulence

1£ #.  Urel Frisch

hOFE R W

FEHE: =578 X

H AR &E: HAERHRAFRLELAF
B Rl &, ZMiEHEPFHEHRAA
.4 T HHREAREEAFSIEAR (AN RS 137 5 100010 )
BEZEEBIE:  010-64021602, 010-64015639
EF{E#: kb@ wpcbj. com. en

¥ F: 24 %

Ep [ 13

KR . 2011 F04 B

M EiR. B, 01-2010-3786

#s:

978-7-5100-3294-3/0 - 871 E ffr:  39.00C




This textbook presents a modern account of turbulence, one of the
greatest challenges in physics. The state-of-the-art is put into historical
perspective five centuries after the first studies of Leonardo and half
a century after the first attempt by A.N. Kolmogorov to predict the
properties of flow at very high Reynolds numbers. Such “fully developed
turbulence” is ubiquitous in both cosmical and natural environments, in
engineering applications and in everyday life.

First, a qualitative introduction is given to bring out the need for a
probabilistic description of what is in essence a deterministic system.
Kolmogorov’s 1941 theory is presented in a novel fashion with emphasis
on symmetries (including scaling transformations) which are broken
by the mechanisms producing the turbulence and restored by the chaotic
character of the cascade to small scales. Considerable material is de-
voted to intermittency, the clumpiness of small-scale activity, which has
led to the development of fractal and multifractal models. Such models,
pioneered by B. Mandelbrot, have applications in numerous fields
besides turbulence (diffusion limited aggregation, solid-earth geophysics,
attractors of dynamical systems, etc). The final chapter contains an intro-
duction to analytic theories of the sort pioneered by R. Kraichnan, to
the modern theory of eddy transport and renormalization and to recent
developments in the statistical theory of two-dimensional turbulence. The
book concludes with a guide to further reading.

The intended readership for the book ranges from first-year graduate
students in mathematics, physics, astrophysics, geosciences and engineer-
ing, to professional scientists and engineers. Elementary presentations of
dynamical systems ideas, of probabilistic methods (including the theory
of large deviations) and of fractal geometry make this a self-contained
textbook.
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Preface

Andrei Nikolaevich Kolmogorov’s work in 1941 remains a major source
of inspiration for turbulence research. Great classics, when revisited in
the light of new developments, may reveal hidden pearls, as is the case
with Kolmogorov’s very brief third 1941 paper ‘Dissipation of energy in
locally isotropic turbulence’ (Kolmogorov 1941c). It contains one of the
very few exact and nontrivial results in the field, as well as very modern
ideas on scaling, ideas which cannot be refuted by the argument Lev
Landau used to criticize the universality assumptions of the first 1941
paper.

Revisiting Kolmogorov’s fifty-year-old work on turbulence was one
goal of the lectures on which this book is based. The lectures were
intended for first-year graduate students in ‘Turbulence and Dynamical
Systems’ at the University of Nice-Sophia-Antipolis. My presentation
deliberately emphasizes concepts which are central in dynamical systems
studies, such as symmetry-breaking and deterministic chaos. The students
had some knowledge of fluid dynamics, but little or no training in modern
probability theory. 1 have therefore included a significant amount of
background material. The presentation uses a physicist’s viewpoint with
more emphasis on systematic arguments than on mathematical rigor.
Also, I have a marked preference for working in coordinate space rather
than in Fourier space, whenever possible.

Modern work on turbulence focuses to a large extent on trying to un-
derstand the reasons for the partial failure of the 1941 theory. This ‘inter-
mittency’ problem has received here considerable coverage. Kolmogorov
himself became a pioneer in this line of investigation in 1961, following
the work of his collaborator A.M. Obukhov (Kolmogorov 1961). Al-
though some of their suggestions can be criticized as mathematically or
physically inconsistent, their 1961 work has been and remains a major
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Xii Preface

source of inspiration. For pedagogical reasons, I have chosen to discuss
historical aspects only after presentation of more recent work on ‘fractal’
and ‘multifractal’ models of turbulence.

Some of the material on Kolmogorov presented here has appeared
in a special issue of the Proceedings of the Royal Society ‘Kolmogorov’s
ideas 50 years on’, which also contains a whole range of alternative
views on Kolmogorov and on what matters for turbulence research
(Frisch 1991). Other useful references on Kolmogorov are the selected
works (Tikhomirov 1991), the obituary (Kendall 1990), the review of the
turbulence work of one of his close collaborators (Yaglom 1994) and the
personal recollections concerned more with the mathematician and the
man (Arnold 1994).

In an introductory course on turbulence, of about thirty hours of
lecturing, many aspects had to be left out. I have included at the end
of this book a guided tour to further reading as a partial remedy. It is
also intended to convey briefly my — possibly very biased — views of
what matters. No attempt has been made to present a balanced historical
perspective of a subject now at least five centuries old (see p. 112); the
reader will nevertheless find a number of historical sections and remarks
and may discover for example that the concept of eddy viscosity was
introduced in the middle of the nineteenth century (see p. 223).

More information on the organization of this book may be found in
Section 1.2 (see p. 11).

The intended readership for the book ranges from first-year graduate
students in mathematics, physics, astrophysics, geophysics and engineer-
ing, to professional scientists and engineers. Primarily, it is intended for
those interested in learning about the basics of turbulence or wanting to
take a fresh look at the subject. Much of the material on probabilistic
background, on fractals and multifractals also has applications beyond
fluid mechanics, for instance, to solid-earth geophysics.

I am deeply grateful to J.P. Rivet who in many respects has given
life to this book and I am particularly indebted to AM. Yaglom
for numerous discussions and comments. Very useful remarks and
suggestions were received from VI. Arnold, G. Barenblatt,
G.K. Batchelor, L. Biferale, M. Blank, M.E. Brachet, G. Eyink, H. Frisch,
H.L. Grant, M. Hénon, J. Jiménez, R. Kraichnan, B. Legras, A. Migdal,
G.M. Molchan, A. Noullez, K. Ohkitani, S.A. Orszag, A. Praskovsky,
A. Pumir, Z.S. She, Ya. Sinai, J. Sommeria, P.L. Sulem, M. Vergassola,
E. Villermaux and B. Villone. M.C. Vergne has realized some of the
figures. I also wish to thank the students of the ‘DEA Turbulence et
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Systemes Dynamiques’ of the University of Nice-Sophia—Antipolis who
have helped me with their questions, since I started teaching this material
as a graduate course in 1990.

Part of the work for this book was done while I was visiting Princeton
University (Center for Fluid Dynamics Research). Significant support
was received from the ‘Direction des Recherches et Moyens Techniques’,
from various programs of the European Union and from the ‘Fondation
des Treilles’.

I would like to dedicate this new printing to Giovanni Paladin who
died in a mountaineering accident on June 29, 1996.

Finally, it was a pleasure and a privilege to work in close collaboration
with Alison, Maureen, Simon and Stephanie at Cambridge University
Press.

Nice, France U. Frisch
July 1995
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Introduction

1.1 Turbulence and symmetries

In Chapter 41 of his Lectures on Physics, devoted to hydrodynamics and
turbulence, Richard Feynman (1964) observes this:

Often, people in some unjustified fear of physics say you can't write an equation
Sor life. Well, perhaps we can. As a matter of fact, we very possibly already have
the equation to a sufficient approximation when we write the equation of quantum
mechanics:

h oy
Of course, if we only had this equation, without detailed observation of
biological phenomena, we would be unable to reconstruct them. Feynman
believes, and this author shares his viewpoint, that an analogous situation
prevails in turbulent flow of an incompressible fluid. The equation,
generally referred to as the Navier-Stokes equation, has been known

since Navier (1823):

dv+v-Vo = —Vp+vV2v, (1.2)
V-v=0. (1.3)

It must be supplemented by initial and boundary conditions (such as the
vanishing of v at rigid walls). We shall come back later to the choice of
notation.

The Navier-Stokes equation probably contains all of turbulence. Yet
it would be foolish to try to guess what its consequences are without
looking at experimental facts. The phenomena are almost as varied as in
the realm of life.



Introduction

3]

A good way to make contact with the rich world of turbulence phe-
nomena is through the book of Van Dyke (1982) An Album of Fluid
Motion. To communicate a first impression of the experimental facet of
turbulence, we shall mainly use pictures from this book.

In this Introduction, we have chosen to stress the ideas of broken sym-
metries and of restored symmetries. Symmetry consideration are indeed
central to the study of both transition phenomena and fully developed tur-
bulence. For the time being we shall leave aside the quantitative aspects
of experimental data with the exception of the control parameter, the
Reynolds number, which is defined as

_ LY

R , (1.4)
v

L and V being respectively a characteristic scale and velocity of the
flow, and v its (kinematic) viscosity.! Remember a consequence of the
similarity principle for incompressible flow: for a given geometrical shape
of the boundaries, the Reynolds number is the only control parameter
of the flow.

With this in mind, let us observe what happens when increasing the
Reynolds number in flow past a cylinder. We have chosen a cylinder
in order to ensure some degree of symmetry, while selecting an external
flow. External flow is more difficult to control and to study but has
more life than internal flow which is confined by its boundaries, such as
Rayleigh—Bénard convection or Taylor-Couette flow.

As shown in Fig. 1.1, we consider a flow of uniform velocity V =
(V,0,0) (at infinity), parallel to the x-axis, incident from the left on an
infinite cylinder, of circular cross-section with diameter L, the axis being
along the z-direction.

Fig. 1.2 is a visualization of the flow at R = 0.16. At first, the flow
appears to possess the following symmetries:

o Left—right (x-reversal),

e Up-down (y-reversal),

o Time-translation (t-invariance),

e Space-translation parallel to the axis of the cylinder (z-invariance).

All these symmetries, except the first, are consistent with the Navier—
Stokes equation and the boundary conditions. Let us be a little bit more

"' In c.g.s. units the kinematic viscosity is about one-seventh for air and one-hundredth
for water.
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1.1 Turbulence and symmetries

Fig. 1.1. Uniform flow with velocity V', incident on a cylinder of diameter L.

Fig. 1.2. Uniform flow past a cylinder at R = 0.16 (Van Dyke 1982). Photograph
S. Taneda.

left-right symmetry is
(x,y,2) = (—x,y,2), (u,0,w) = (U, —v, —w). (1.5)
The up—down symmetry is

(x,y,2) = (x,—y,2), (1,0, w) — (u,—v, w). (1.6)
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Fig. 1.3. Circular cylinder at R = 1.54 (Van Dykc 1982). Photograph S. Taneda.

It is easily checked that the left-right symmetry is not consistent with
the Navier-Stokes equation, although it is consistent with the Stokes
equation, obtained by dropping the nonlinear term. Actually, closer
inspection of Fig. 1.2 shows that the left-right symmetry is not exact:
it is slightly broken. This is an effect of the residual nonlinearity, which
would get even weaker if we were to let the Reynolds number become
much smaller.

Fig. 1.3 shows the flow at R = 1.54. There is now a marked left-
right asymmetry. Around R = 5 the flow begins to separate behind
the cylinder. Although no symmetry-breaking occurs, there is a change
in the topology of the flow associated with the formation of recircu-
lating standing eddies, shown in Fig, 14 for various values of R from
9.6 to 26.

Around R = 40 the first true loss of symmetry occurs by an Andronov—
Hopf bifurcation which makes the flow time-periodic; in other words, the
continuous t-invariance is broken in favor of a discrete t-invariance. The
flow in the immediate neighborhood of the bifurcation point is shown
in Fig. 1.5. At higher values of R, such as shown in Figs. 1.6, 1.7 and



