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Abstract

By generalizing the definition of Hall algebra of the ring of p-adic integers
studied by Steinitz [ 48], and later by Hall [20], Ringel [38] introduced the
basic notion of Ringel-Hall algebra of a finitary algebra. Later, by the work of
Ringel,, Green, Lusztig, and many others, Ringel-Hall algebras provide a nice
framework for the realization of quantized enveloping algebras and Kac-Moody Lie
algebras. Ringel-Hall algebra approach thus becomes an important tool in the
study of quantum groups. In particular, the machinery of representation theory of
algebras can be used to investigate the structure and representations of quantum
groups and Lie algebras.

In this book ,we study the fundamental relations in Ringel-Hall algebras,the
structure of Ringel-Hall algebras of affine type and their representations as well.
The book consists of the following three parts.

(1) Ringel has made the following remarkable discovery, namely,in a Rin-
gel-Hall algebra, two non-isomorphic simple modules S; and S; satisfy the so-
called fundamental relations. However, Ringel’ s proof was based on the assump-
tion Ext} (S, ,8;) =0 or Ext,l,(Sj,Si) =0. In this book, we generalize Ringel’ s
result. We first show that fundamental relations hold without the above assump-
tion ;then we show that Ringel-Hall algebras satisfy higher order fundamental rela-
tions,too. By twisting the multiplication, these relations become quantum Serre
relations and higher order quantum Serre relations , respectively. As an application
of higher order fundamental relations, we prove that for the cyclic quiver of two
vertices, the composition monoid algebra is isomorphic to the generic composition
algebra specialized at ¢ =0.

(2)In the second part,we study certain subalgebras of Ringel-Hall algebras

e 1.



of tame type,which are generated by the composition algebra and those modules
from a single tube ‘¥ ,and prove that these subalgebras inherit Hopf algebra struc-
tures. In case Q is an acyclic quiver of type 4 and ¥ is a non-homogeneous tube
or a homogeneous tube of degree 1,we present the generators and the generating
relations for such subalgebras. Moreover , it is shown that such subalgebras are iso-
morphic to the Ringel-Hall algebra of a cyclic quiver. Therefore, the structure of
the Ringel-Hall algebra of an acyclic quiver can be applied to study the structure
of the Ringel-Hall algebra of a cyclic quiver.

(3)In the final part,we study finite dimensional representations of the doub-
le Ringel-Hall algebra D (A,) of the cyclic quiver A, with two vertices. In refer-
ence [4], the authors classified finite dimensional irreducible representations of
U, (;[2) by making use of the Drinfeld presentation of affine quantum groups.
Based on their work, we construct finite dimensional irreducible weight D (A, )-
modules. More precisely, we study irreducible D ( A, )-weight modules in two
ways , and successfully establish a connection between finite dimensional weight D
(A, )-modules and finite dimensional C[z* |/=1]-modules,where C[z* }]1=

1 ]is the polynomial ring with infinitely many variables.

Key words: Ringel-Hall algebra, fundamental relation, higher order funda-

mental relation, affine quiver,weight module , irreducible module.
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1 Introduction

1.1 Background

In [ 16 ] Gabriel introduced the notion of representations of quivers and dis-
covered a remarkable connection between the indecomposable representations of
Dynkin quivers and the positive roots of the corresponding finite dimensional com-
plex simple Lie algebras. Soon after,the representations of tame( valued ) quivers
were studied in[ 14,35,13 ]. In[ 28 ], Kac proved that for an arbitrary quiver Q
without loops ,the dimension vectors of indecomposable representations of Q over
an algebraically closed field correspond bijectively to the positive roots of the cor-
responding Kac-Moody algebra.

In 1990s, Ringel [ 38,40 ] defined Hall algebras ( nowadays called Ringel-
Hall algebras in the literature) of finitary rings in order to deal with possible fil-
trations of modules with fixed factors. A remarkable observation of Ringel is that
Ringel-Hall algebras satisfy the so-called fundamental relations, which are similar
to the quantum Serre relations—the defining relations for quantized enveloping al-
gebras. Later, it was shown in [42] that by twisting the multiplication in Ringel-
Hall algebras of hereditary algebras, fundamental relations become the quantum
Serre relations themselves. In particular, Ringel 38 ] showed that the twisted
Ringel-Hall algebra of a representation-finite hereditary élgebra A is isomorphic to
the positive part U* of the quantized enveloping algebra U, (g) of the complex

semisimple Lie algebra 9 associated with A. Later on, Green[ 18] extended Rin-

gel’ s result to arbitrary finite dimensional hereditary algebras. More precisely, he
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Fundamental Relations and Double Ringel-Hall Algebras

showed that the generic composition algebra of an arbitrary hereditary algebra is i-
somorphic to the positive part of the associated quantized enveloping algebra.
Hence, Ringel-Hall algebra approach provides a nice framework for the realiza-
tion of quantized enveloping algebras. Recently, it was shown that the whole doub-
le Ringel-Hall algebra D (A) of the hereditary algebra A is isomorphic to the
quantized enveloping algebra of a generalized Kac-Moody algebra in the sense of
Borcherds [3] (see[44, 21, 47,9, 56]).

We remark that Ringel-Hall algebra approach also provides a realization of
symmetrizable Kac-Moody algebras (see{39,36]). Also, inspired by Ringel’ s
work , Lusztig[ 31 ] gave a geometric realization of quantum groups in terms of rep-

resentation varieties of quivers.

1.2 Main results

Let A be a finitary algebra (e. g. , finitely generated algebra) over a finite
field Fy. By A-mod we denote the category of finite dimensional left A-modules.
The integral Ringel-Hall algebra B (A) of 4 is by definition the free abelian group
with basis u;, ,indexed by isoclasses[ M | of finite dimensional A-modules M. The
multiplication is given by

Uiy = ;F;,NM[L] ,
where Fj; y is the number of submodules X of L such that X2 N and L/X»oM.

Let S;,iel,be a complete set of simple A-modules in A-mod. For simplici-
ty,we write u; = u(g, for each i € I. For each i e I, the endomorphism algebra
D;: =End,(S,) of S, is a finite field extension of Fy and let ¢, = ID.|.

Choose i 7] in I. Suppose Ext,(S;,S,) =0. Ringel showed in [38] that un-
der the assumption Ext}(S;,S;) =0, we have in f(4),

hd (r-1
> -0 [P ] wuur = o,
r= r g

where n. =1 +dimg,,, Ext; S;,8;) ,and under the assumption Ext ( §;,8;) =0,

we have

.2.
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3 -0 2 ] s o,

where m = 1 + dim Ext] (S,, S;) bnd,(sy - These are called the fundamental rela-
tions.

In this thesis,we first show that, to obtain the fundamental relations, the as-
sumption Ext} (S, ,$;) =0 or Ext,(S;,S;) =0 is indeed not necessary.

For i#j e I, we consider the D,-D,-bimodule Ext, ( S;,S.)and define

¢'iy= —dimpExt, (5;,5,), ¢",; = - dim Ext}(S,,5;) p,.

Set c;;=c’;; +c"; ;. We have the following theorem.
Theorem 1.2.1. Let A be a finitary algebra over a finite field ]Fq. Let i, jel with
i#] and suppose c,; =2, i.e. ,Ext,(S,,S;) =0. Then we have in h(A),

1)

id {r+e”; N (r+e”;
2(" gz “__"]] Wuul” =0, (L2.1.1)
r= r -Hgi

where n =1 -c, ..

The fundamental relations obtained in[ 38 ] are exactly the formula(1.2.1.1)
for the cases ¢”;; =0 and ¢’;; =0. In some sense, the theorem means that the fun-
damental relations are“ universal”.

Then, by twisting the multiplication of the Ringel-Hall algebra of an arbitrar-
y finitary algebra,the quantum Serre relations are also obtained.

We further show that Ringel-Hall algebras satisfy the higher order fundamen-
tal relations which give rise to the higher order quantum Serre relations in the
twisted version.

Theorem 1.2.2. Let A be a finitary algebra over a finite field T, q-Let i, jelwith
i#]. Suppose c,; =¢;; =2,i. e. ,Ext,(S,,S5,) =0 = Ext]A(Sj,Sj). Then for n=1

and m=1 -nc,,

hid (r=m-ne'y ) (r-m-nc'; +1) Tm
2(— 1)’q; 7 [[ ]] wuul™ = 0. (1.2.2.1)
r= r He

This theorem has the following nice application. Let A, be the cyclic quiver of n

vertices,i. e. ,
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n

n—2 n—1

N

1

We use the notation Dq( A, ) to denote the generic Ringel-Hall algebra of A,

over the polynomial ring Q[ g]. Let €q(A,) be its subalgebra generated by sim-
ple modules. For each n=1,setting m =2n + 1 and ¢ =0, Theorem 1.2.2 im-
plies that in the composition subalgebra ¢o(A,) (as Q-algebra) , there hold

A+l n n _  n_n_n+l
Uy Uy =u iy,

uy g = udulul !
On the other hand, following [37 ], we have the monoid of generic extensions
M =M (A,)which has as elements the isomorphism classes of nilpotent repre-
sentations of A,. The multiplication in # is giving by taking generic extensions.
By M. we denote the submonoid generated by the simple representations.

Combining the above results with[34, Theorem2. 2. 15 Jgives the following
theorem.

Theorem 1.2.3. We have Q-algebras isomorphism: QM. > ¢o(A,).

Some relations between the Ringel-Hall algebra of a finitary algebra and Rin-
gel-Hall algebras of its factor algebras are also studied. More precisely, if B is a
factor algebra of A, then the Ringel-Hall algebra §(B) of B is a factor algebra of
B(A). Also, the Lie algebra associated with B is a factor algebra of the Lie alge-
bra associated with A.

Second , we study certain subalgebras of double Ringel-Hall algebra of tame

type. Let Q be an extended Dynkin quiver and A4 = Fy Q be the path algebra.
Following[ 50 ] , we have the reduced double Ringel-Hall algebra D (A) over C

which admits a Hopf algebra structure.
It is well known that (see [13]) the Auslander-Reiten quiver of A has a
separating tubular family, and those indecomposable modules from a same tube T

form an abelian exact uniserial subcategory, closed under extensions. This allows
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us to define the Ringel-Hall algebra hg of ¥, which is a subalgebra of §(A4)

generated by {u,,u;y;liel,Me%}. Now let T be an arbitrary tube ,define D3
(A) to be the subalgebra of D(A) generated by {u* K’ suppliel Me ).
Our first result in this direction is the following.

Proposition 1.2.4. D3 (A) is a Hopf subalgebra of D(A).

This implies particularly that we can get infinitely many Hopf subalgebras of
D(A).

Now we restrict our attention to the tame quivers of type 4. A tube is said to
be of degree 1 if it arises from an irreducible monic polynomial over Fy of degree
1. We have the following results.

Theorem 1.2.5. Let A be the path algebra of an acyclic quiver of type 4 over Fg.
Assume ‘¥ is a non-homogeneous tube or a homogeneous tube of degree 1 of A. Then

the algebra DI (A) is generated by the generators u," ,u;” K, K '(i=1,2,...,

n) and z7 (s=1) with the generating relations given in Lemma 4. 3. 3, Lemma
4.3.4and(4.3.4.1),(4.3.4.2).
Corollary 1.2.6. Let A be the path algebra of an acyclic quiver (with n vertices )

of type [ over Fy. Assume T is a non-homogeneous tube or a homogeneous tube of
degree 1 of A. Then DT (A) is isomorphic to D ( ¥y A,) ,where A, is the cyclic
quiver with n vertices.

Therefore ,we may use the structure of D3 (A) to study the double Ringel-

Hall algebra of a cyclic quiver. For example, the BGP-reflection functors for acy-
clic quivers can be used to study the Lusztig’ s symmetries of Z)(Fq A, ) though

these functors can not be directly defined for the cyclic case.
The final part of the thesis deals with the construction of finite dimensional
representa-tions of the double Ringel-Hall of the cyclic quiver A,. In [4], the

authors classified finite dimensional irreducible U, (;[2)-modules. Namely , every

finite dimensional irreducible representation of U, (slp) on which the center acts

trivially is a tensor product of evaluation representations V. (a)) @@V, (a,)

. 5.
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with the v-strings S, (@,),...,S, (a,)in general position (see [4, Theorem
4.8]). Here,V,(a) (a e C*) is the so-called evaluation representation ob-
tained by pulling back the classical n + 1-dimensional irreducible representation
V., of U, (::\[2) via the evaluation homomorphism ev,: U, (;[2)* U, (s12)(see[4,
Proposition4. 1 ] ). Their construction relies on the second realization of quantum
affine algebras given by Drinfeld ([15]).

Motivated by the idea in [4 ], we present two constructions of finite dimen-
sional weight D( A, ) -modules. Our work is based on the structure theorem of D
(A,) essentially due to[45].

On the one hand, the restriction of a weight D (A, )-module V is again a
weight U, (‘t;'\[‘f;_)-module,we denote this module by V. Further,let V be of type I,1.
e. ,it has a decomposition

V=V, (@) @ @Va, (3,
@V, (a2) " @@V, (a,,)™

®Va, (e )" DBV, (a,,),
where s;=1,m, >m, >--- >m,=0,and for each fixed i,a,; are pairwise distinct
complex numbers.

Let W be a finite dimensional C[z," |/=1]-module. Then for each m =0
and e e C*,V,,(a)®C W becomes naturally a module over D(A,). We denote
this module by V_(a,W).

Theorem 1.2.7. Let V be afinite dimensional irreducible weight D (A, )-module
with V being of type I. Then V=V_(a,W)for some C[z |1=1]-module W. Mo-
reover for every finite dimensional C[z7 11=1]-module W,

(1) The D(A,)-module V, (a,W) is irreducible if and only if W is an irre-
ducible C[z? 11=1]-module.

(2)The D(A,;)-module V,,(a,W) is indecomposable if and only if W is an
indecomposable C[z 11=1]-module.
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