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Introduction to Volume 2 — Functional
Analytic Methods

In this second volume, FUNCTIONAL ANALYTIC METHODS, we continue our
textbook PARTIAL DIFFERENTIAL EQUATIONS OF GEOMETRY AND PHYSICS.
From both areas we shall answer central questions such as curvature estimates
or eigenvalue problems, for instance. With the title of our textbook we also
want to emphasize the pure and applied aspects of partial differential equa-
tions. It turns out that the concepts of solutions are permanently extended in
the theory of partial differential equations. Here the classical methods do not
lose their significance. Besides the n-dimensional theory we equally want to
present the two-dimensional theory - so important to our geometric intuition.

We shall solve the differential equations by the continuity method, the vari-
ational method or the topological method. The continuity method may be
preferred from a geometric point of view, since the stability of the solution is
investigated there. The variational method is very attractive from the physi-
cal point of view; however, difficult regularity questions for the weak solution
appear with this method. The topological method controls the whole set of
solutions during the deformation of the problem, and does not depend on
uniqueness as does the variational method. ' '

We would like to mention that this textbook is a translated and expanded ver-
sion of the monograph by Friedrich Sauvigny: Partielle Differentialgleichungen
der Geometrie und der Physik 2 — Funktionalanalytische Losungsmethoden
- Unter Berticksichtigung der Vorlesungen von E.Heinz, which appeared in
Springer-Verlag in 2005.

In Chapter VII we consider — in general — nonlinear operators in Banach
spaces. With the aid of Brouwer’s degree of mapping from Chapter III we
prove Schauder’s fixed point theorem in §1 ; and we supplement Banach’s
fixed point theorem. In § 2 we define the Leray-Schauder degree for mappings
in Banach spaces by a suitable approximation, and we prove its fundamental
properties in §3 . In this section we refer to the lecture [H4] of my academic
teacher, Professor Dr. E. Heinz in Gottingen.
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Then, by transition to linear operators in Banach spaces, we prove the funda-
mental solution-theorem of F. Riesz via the Leray-Schauder degree. At the end
of this chapter we derive the Hahn-Banach continuation theorem by Zorn’s
lemma(compare [HS)).

In Chapter VIII on Linear Operators in Hilbert Spaces, we transform the
eigenvalue problems of Sturm-Liouville and of H. Weyl for diffe:ential opera-
tors into integral equations in § 1 . Then we consider weakly singular integral
operators in §2 and prove a theorem of I.Schur on iterated kernels. In §3
we further develop the results from Chapter 11, §6 on the Hilbert space and
present the abstract completion of pre-Hilbert-spaces. Bounded linear opera-
tors in Hilbert spaces are treated in §4: The continuation theorem, Adjoint
and Hermitian operators, Hilbert-Schmidt operators, Inverse operators, Bi-
linear forms and the theorem of Lax-Milgram are presented. In §5 we study
the transformation of Fourier-Plancherel as a unitary operator on the Hilbert
space L3(R™) .

Completely continuous, respectively compact operators are studied in §6 to-
gether with weak convergence. The operators with finite square norms rep-
resent an important example. The solution-theorem of Fredholm on opera-
tor equations in Hilbert spaces is deduced from the corresponding result of
F.Riesz in Banach spaces. We particularly apply these results to weakly sin-
gular integral operators.

In §7 we prove the spectral theorem of F. Rellich on completely continucus
and Hermitian operators by variational methods. Then we address the Sturm-
Liouville eigenvalue problem in §8 and expand the relevant integral kernels
into their eigenfunctions. Following ideas of H. Weyl we treat the eigenvalue
problem for the Laplacian on domains in R™ by the integral equation method
in .§9. In this chapter as well, we take a lecture of Professor Dr. E. Heinz
into consideration (compare [H3]). For the study of eigenvalue problems we
recommend the classical treatise [CH] of R. Courant and D. Hilbert, which has
also smoothed the way intc modern physics.

We have been guided into functional analysis with the aid of problems concern-
ing differential operators in mathematical physics (compare [Hel] and [He2]).
The usual content of functional analysis can be taken from the Chapters 11
§86-8, VII and VIII. Additionally, we investigated the solvability @f nonlinear
operator equations in Banach spaces. For the spectral theorem of unbounded,
selfadjoint operators we refer the reader to the literature.

In our compendium we shall directly construct classical solutions of boundary
and initial value problems for linear and nonlinear partial differential equa-
tions with the aid of functional analytic methods. By appropriate a priori esti-
mates with respect to the Holder norm we establish the existence of solutions
in classical function spaces.

In Chapter IX, §§1-3 , we essentially follow the book of I. N. Vekua [V] and
solve the Riemann-Hilbert boundary value problem by the integral equation
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method. Using the lecture {H6]| , we present Schauder’s continuity method in
§§ 4-7 in order to solve boundary value problems for linear elliptic differential
equations with n independent variables. Therefore, we completely prove the
Schauder estimates.

In Chapter X on weak solutions of elliptic differential equations, we profit from
the Grundlehren [GT] Chapters 7 and 8 of D. Gilbarg and N.S. Trudinger.
Here, we additionally recommend the textbook [Jo] of J. Jost and the com-
pendium [E] by L. C. Evans.

We introduce Sobolev spaces in §1 and prove the embedding theorems in
§2. Having established the existence of weak solutions in §3 , we show the
boundedness of weak solutions by Moser’s iteration method in §4 . Then
we investigate Holder continuity of weak solutions in the interior and at the
boundary; see §§5-7 . Restricting ourselves to interesting classes of equations,
we can illustrate the methods of proof in a transparent way. Finally, we apply
the results to equations in divergence form; see §8&, §9, and §10.

In Chapter XI, §§1-2, we concisely lay the foundations of differential geom-
etry (compare [BL]) and of the calculus of variations. Then, we discuss the
theory of characteristics for nonlinear hyperbolic differential equations in two
variables {compare [CH], {G], [H5]) in §3 and §4. In particular, we solve the
Cauchy initial value problem via Banach's fixed point theorem. In §6 we
present H. Lewy’s ingenious proof for the analyticity theorem of S. Bernstein.
Here, we would like to refer the reader to the textbook by P. Garabedian |G|
as well,

On the basis of Chapter IV from Volume 1, Generalized Analytic Functions,
we treat Nonlinear Elliptic Systems in Chapter XII. We give a detailed survey
of the results at the beginning of this chapter.

Having presented Jiger’s maximum principle in §1 , we develop the general
theory in §§ 2-5 from the fundamental treatise of E. Heinz [H7] about nonlinear
elliptic systems. An existence theorem for nonlinear elliptic systems is situ-
ated in the center, which is gained by the Leray-Schauder degree. In §§6-10 we
apply the results to differential geometric problems. Here, we introduce con-
formal parameters into a nonanalytic Riemannian metric by a nonlinear con-
tinuity method. We directly establish the necessary apriori estimates which
extend to the boundary. Finally, we solve the Dirichlet problem for nonpara-
metric equations of prescibed mean curvature by the uniformization method.
For this chapter, one should also study the Grundlehren [DHKW], especially
Chapter 7, by U. Dierkes and S. Hildebrandt, where the theory of minimal sur-
faces is presented. With the aid of nonlinear elliptic systems we can also study
the Monge-Ampére differential equation, which is not quasilinear any more.
This theory has been developed by H. Lewy, E. Heinz and F. Schulz (vgl. [Sc])
in order to solve Weyl's embedding problem.

This textbook PARTIAL DIFFERENTIAL EQUATIONS has been developed from
lectures, which I have been giving in the Brandenburgische Technische Univer-
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sitdt at Cottbus since the winter semester 1992/93. The monograph , in part,
builds upon the lectures of Professor Dr. E. Heinz, whom I was fortunate to
know as his student in Gottingen from 1971 to 1978. As an assistant in Aachen
from 1978 to 1983, I very much appreciated the elegant lecture cycles of Pro-
fessor Dr. G. Hellwig. Since my research visit to Bonn in 1989/90, Professor
Dr. S. Hildebrandt has followed my academic activities with his supportive
interest. All of them will forever have my sincere gratitude!

My thanks go also to M. Sc. Matthias Bergner for his elaboration of Chapter
IX. Dr.Frank Miiller has excellently worked out the further chapters, and
he has composed the whole TEX-manuscript. I am cordially grateful for his
great scientific help. Furthermore, I owe to Mrs. Prescott valuable suggestions
to improve the style of the language. Moreover, I would like to express my
gratitude to the referee of the English edition for his proposal, to add some
historical notices and pictures, as well as to Professor Dr. M. Frohner for his
help, to incorporate the graphics into this textbook. Finally, I thank Herrn
C. Heine and all the other members of Springer-Verlag for their collaboration
and confidence.

Last but not least, I would like to acknowledge gratefully the continuous
support of my wife, Magdalene Frewer-Sauvigny in our University Library
and at home.

Cottbus, in May 2006 Friedrich Sauvigny
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VII

Operators in Banach Spaces

We shall now present methods from the nonlinear functional analysis. In this
chapter we build upon our deliberations from Chapter I, §§6-8. A detailed
account of the contents for this chapter is given in the ’Introduction to Volume
2’ above.

§1 Fixed point theorems

Definition 1. The Banach space B is a linear normed complete (infinite-
dimensional) vector space above the field of real numbers R.

Ezample 1. Let the set 2 C R™ be open, 1 < p < +o0, B := LP({2). We have
f € L?P(R) if and only if f : 2 — R is measurable and

/ |F@)P dz < +oo
n

holds true. For the element f € B we define the norm

1Al = ( / |f(:c)|”dz) g
[es

We obtain the Lebesgue space with B. The case p = 2 reduces to the Hilbert
space using the inner product

(£, 9) 2=/f(a:)g(a:)dz.
2

Ezample 2. (Hilbert’s sequence space €P) For the sequence = = (z1, 22,23, ...)
we have z € P with 1 < p < 400 if and only if
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00
Z |I,’|p < 400
=1

is fulfilled. By the norm
. 1
P
falli= (3l
i=1
the set /7 becomes a Banach space. Obviously, we have €7 C LP((0, +00)).

X, X4

Xy X3 Xs

| ] 1 | ! | P
I 1 1 I T T -

0 I 2 3 4 5

Ezample 3. (Sobolev spaces) Let the numbers k € N, 1 < p < +o0 be given,
and 2 C R™ denotes an open set. The space

B=WFEP(Q) = {f ‘R —R: D*f e LP(0) for all o] < k}

with the norm

| fllwesoy = ( > f ID“f(z)I”de)%, feB,

la|<k

represents a Banach space. Here, the vector a = (a1,...,0,) € N} indicates
a multi-index, and we set

n
lof := ) "oy € No:=NuU {0}.

g=1
In this context we refer the reader to Chapter X, §1.

Ezample 4. Finally, we consider the classical Banach spaces Ck(_ﬁ), k =
0,1,2,3,..., on a bounded domain 2 C R". We have f € C*(f2) if and
only if

sup Z |D® f(z)| < +00

TEN lal<n

holds true. Here o € Nj again denotes a multi-index. The vector space B :=
C*(02) equipped with the norm

ifllgeq == Y sup|D*f(x)|
lal<k €N
is complete, and consequently represents a Banach space. Here, we abbreviate

lol

D% f(x) = 52 .. ool f(z),

aeNp, Ny:=Nu{0}.
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Definition 2. A subset K C B of the Banach space B is named convex, if we
have the inclusion Az + (1 — A)y € K for each two points x,y € K and each
parameter A € [0,1].

Remarks:

1. When K is closed, this set is convex if and only if

1
r,ye K = §(m+y)€K

holds true.
2. For a convex set K we have the following implication: Choosing the points
Z1,-..,Zn € K and the parameters A; > 0,i =1,...,nwith \;+...+ ), =

1, we infer
n
> Mz € K.
i=1

Definition 3. A subset E C B is called precompact, if each sequence
{Tn}n=12..CE

contains a Cauchy sequence as a subsequence. If the set E is additionally
closed, which means {z,}nen C E with z, — x for n — oo in B implies
z € E, we call the set E compact.

Ezample 5. Let E C B be a closed and bounded subset of a finite-dimensional
subspace of B. Then the Weierstra selection theorem yields that E is com-
pact.

Ezample 6. For infinite-dimensional Banach spaces, bounded and closed sub-
sets are not necessarily compact: Choosing £k € N we consider the set of
sequences Ty = (0k;)j=1,2,... in the space #2. As usual, 0x; denotes the Kro-
necker symbol. Obviously, we have ||zl =1 for k € N and

lze — zll = V2(1 — 6)  forall k,leN.
Therefore, the set {zx}k=1,2,.. is not precompact.

Example 7. A bounded set in C* (ﬁ) is compact, if we additionally require a
modulus of continuity for the k-th partial derivatives: Consider the set

[fller@) < M;
E:={feC"®) : ID*f(z) - D*f(y)| < M|z — y|*
forall z,ye 2, |a|=k

with k£ € Ng, M, M’ € (0,+00) and ¥ € (0,1]. By the Theorem of Arzela-
Ascoli we easily deduce that the set

E C B:=C*®)

is compact.
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Definition 4. On the subset E C B in the Banach space B we have defined
the mapping F : E — B. We call F continuous, if

Tp—x for n—o o in E
implies
F(z,) — F(z) for n—- o0 in B
We neme F completely continuous (or compact as well), if additionally the set
F(E) C B is precompact; this means all sequences {Tp}n=12,.. C E contain

a subsequence {Tn, }x C {Zn}n, such that {F(z,,)}k=1,2,.. gives a Cauchy
sequence in B.

Proposition 1. Let K be a precompact subset of the Banach space B. For all
€ > 0 we have finitely many elements wy,...,wy € K with N = N(¢) € N,
such that the covering property

N(e) ¢
K C U {:J:EB: ||a:-wj||§-2-}

Jj=1
is fulfilled.

Proof: We choose uy € K and the covering property is already valid if

KC{:::EB: ll:c—w1||§g}

holds true. When this is not the case, there exists a further point wy € K
with ||w2 — w1|| > £ and we consider the balls

{xeB: ||z—wj||§§} for j=1,2.

If they do not yet cover the set K , there would exist a third point w3z € K
with |jws —w;|| > § for j = 1,2. In case the procedure did not stop, we could
find a sequence {w;};—12... C K of points satisfying

€
||w]-—w,-||>§ for i=1,...,j—1.
This yields a contradiction to the precompactness of the set K. q.ed.

Proposition 2. Let K be a precompact set in B, and e > 0 is arbitrarily given.
Then we have finitely many elements wy,...,wy € K with N = N(e) € N
continuous functions

t; = ti(l') K —-R € CO(_I?)

satisfying
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N
ti(x) >0 and Zti(z) =1 in K,
i=1

such that the following inequality holds true:

N
Z ti(x)w; — x
i=1

Proof: We choose the points {wy,...,wnx} C K according to Proposition 1.
We define the continuous function ¢(7) : [0, +00) — [0, +00) via

e—-1, for0<7t<e¢
p(r) =

<e foral zeK.

0, fore<rT< 400
and obtain
N R .
Z(p(“m—wj”)zé forall zeK.
=1
Consequently, the functions
t,—(:r)::lf(llm;wi”), zeK, i=1,....N

S oz - wsl)
i=1

are well-defined, and we note that

N
t; € C°(K,[0,1)) and Zti(a:) =1 forall zcK.

i=1

Now, we can estimate as follows:

N
T — Z ti(z)w,-
=1

N
Z ti(z)(z — wi)

N
<D ti@lz - wil

N
< th(l‘)E =€ forall zeK.
i=1

This gives us the inequality stated. g.e.d.

Proposition 3. Let the set E C B be closed and the function F : E — B be
completely continuous. To each number € > 0 then we have N = N(e) ¢ N
elements wy,...,wny € F(E) and N continuous functions F; : E - R, j =
1,..., N satisfying



