‘Eg £ R W3 &

peALL

TENARR [REERE

(R3ZhiR)

PRINCIPLES OF
Computer

Organization

and Assembly
Language

l}all the Ja

i ||() :

mm
!11(‘ 14

. §
-
g

PATRICK JUOLA (& o

Mo T Wi AR

China Machine Press

ERE

L
AR)

(

AR

L1l

)

English reprint edition copyright © 2008 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Principles of Computer Organization and Assembly Language :
Using the Java Virtual Machine (ISBN 0-13-148683-7) by Patrick Juola, Copyright © 2007.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

A FICFZENHR i Pearson Education Asia Ltd. &ﬁmmllktﬁ#ﬁﬁ:ﬁii tHil. REHRE
BEFA, PRUEMSRE RSP EEBANE.
NRFHEARLMEREAN (TRETEEE, RITEITREMTFEESHHE)

RiT.
#+55HH WA Pearson Education (FAHFH HREH) BB IRE, THREZAHHE.
BT, @R,

FHEEHE ERTRARTESH
FHREiZE. E¥: 01-2008-1783
BEHER®BE (CIP) ¥iE

HENMARRICHESFE (FhR) / () £60 (Juola, P.) . —Ibx: LT LM
hk#t, 2008.5
3548 3¢ : Principles of Computer Organization and Assembly Language: Using the Java

Virtual Machine

(SRR)
ISBN 978-7-111-23917-8

I.if O.&- I OHENEREH-EX OILHiES %3¢ IV.TP303 TP313
W E Rl A E BIECIPE R (2008) 450495285

FLBR Tl AR GesttPsmE E 5 EA#22 #BE4RS 100037)

RS BiRkE
JbsAehlR BRI - FiiEELR R AT R AT
20084E5 A 55 LR 55 1K ENR

170mm x 242mm - 21.25E[15k
ftriEd5-5; ISBN 978-7-111-23917-8
Efr: 42.005¢

JUASS, A H., B, Sil, hAstiaiE
A k. (010) 68326294

LhRE B9E

XEEURE, RERKHOPIFHMNESERANZEARE, EESEXER
ARFEHEANGUREE T 2R, hERXHEMNESL, EXEEBSEEAR
RAOATZERARKEN, BOGNE, ERLANERy, XENFLRASHER
MR LR EH A A, HHREILER P2 R LA} R & AR E BT,
MLm= AR 2 BPHEEE, AOER THRRTERE, SHRETHRMESE, BEH
E¥EARE, XBAEEENE, KMEHASEE ANELTGRER.

L, E2KRERMKRENEZD T, REMNHENLLERIE, HELAL
MFEKHEEY, I HENEFTFRMERRAELIE, WEKE, W kEH
MREEHEFER LEF¥ERE, CREGEERRKEBRAEE. MkARKD
MERT, XEFREERELTEIA %X RO ERBRENSHEEM AT
ZE/EEZL, Rk, SI#E—#EMBITHENEM N REH BT E LY
REEBRIHENER, LESHFEN, BIREENHF —RRFHLHZE,

L DR EEXEEARARKREERS “HREAEEFTRSE. A
19984 FF 4, EA RS TIEE ABIE T #:E., BERIIMBEM L. 23 JL4E
IS 51, Hf15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan
Kaufmann% it 3% £ IR A GRS T RIFIATEXRER, WENBLA RS E RS+
¥ 1% H{ Tanenbaum, Stroustrup, Kernighan, Jim Gray% ki £ K —#t 2 8E S,
LA “HENBHEAE” HERER, BHiRE2S. RERER. KEALENEE,
WIEFHE T XENBRI S AL,

“UREILFHEAS" (HRTESSE TERNIMFENR IR, BERNNERAN
RETHENEEES, SAFS FHHETHIFMERNIE, MEBSHESH
MY XERELETENEE, ANETRAXBHHERER. £4, “HEILF
FAE" EL2HR TI2604 dF, XLEPEEREPHMILTRFVOR, a2
R AAERBM S ERE, AP ERBITT T RELAERM.

B & FF R IR D EEMBEM S BRI, 8F R EIMNELEMD
TR REE A—AFHIBT B, Ak, EATRMASIHBMHOSE, B “it
BHLBFEMAS" Z4b, XLENRAI S, WIS “SMFERBE". A TRIE
XAENBHIRREE, REEA T EFAZRMERTIRS, EEAFRET S
EfERE., bk, HERFE EBHRELRE. SEEXK%¥, EERBEKRE, B
K#. WLK%E, PEFRHEARE. WRELLARZ, ALXRKERE, FEARKE,

v
EFAMEMERAZE, ALREBR KRS, PR, BBRERTKRE, PBMKE, WL
TP, FEEXREBRLMFANEF OFENERKEMFHAYSET R
TERNELAFEAR “FRHEFZRE", HRMBEEEERANHREE.
XAENBRW TR HOERMNEEMSE, HEANERTELR
XL UM BFEEITERN, XhFLEHMHIEAM. LT, Stanford, U.C. Berkeley,
C. M. U. FitFAMKEFRRM. AMURE TRFRI, BBEH. BRERK. it
RO RSN, BRE, RIFFE, KATE, BRE, GE5M%, BBE%
EARFEHREN L EEFROZORE, MASRAREG—ANHAIES RIS
ZF. ANBHS2=1TFmAR, AHCH2HRNLEMERRA. X5 #E
B AMAERIESIZT, BELHETRIFENERTHBREMAZE,
REBMEE . SROBM ., —ROEE, FHROEE, BANRE, XEEE
ERMOEBETREMRIE, ERMNOBFHFRRERE, mRRAOELEZRN
REX—&R B EERE ., BMHHRARRIMNESERSIER. £EAF
@ EIRFNIRE A BATH TR MBS THIE, BRIMOBKAGEWT !

B, FHBf: hzjsj@hzbook.com
BEARRIE: (010) 68995264

BeFRubhE: ALRTERK AL EFEE1S
BRBC4RES : 100037

ERESE

(e P 22

Rt
IEF

FIRR

I &35
&
o B3
4 e

l_l

J
=

AN

)

% Ak
R
Skt
th o 2
EWE
8
A2 3

X EM
x B R
A7
Bt
N

WA=

| To My Nieces
Lyric Elizabeth, Jayce Rebekah, and Trinity Elizabeth

‘Preface

Statement of Aims
What

This is a book on the organization and architecture of the Java Virtual Machine (JVM),the
software at the heart of the Java 1anguage and is found inside most computers, Web browsers,
PDAs, and networked accessories. It also covers general principles of machine organization and
archifecture, with llustrations from other popular (and not-so-popular) computers.

It is not a book on Java, the programming language, although some knowledge of Java or a
Java-like language (C, C++, Pascal, Algol, etc.) may be helpful. Instead, it is a book about how
the Java language actually causes things to happen and computations to occur.

This book got its start as an experiment in modern technology. When I started teaching
at my present university (1998), the organization and architecture course focused on the 8088
running MS-DOS—essentially a programming environment as old as the sophomores taking
the class. (This temporal freezing is unfortunately fairly common; when I took the same class
during my undergraduate days, the computer whose architecture I studied was only two years
younger than I was.) The fundamental problem is that the modern Pentium 4 chip isn’t a par-
ticularly good teaching architecture; it incorporates all the functionality of the twenty-year-old
8088, including its limitations, and then provides complex workarounds. Because of this com-
plexity issue, it is difficult to explain the workings of the Pentium 4 without detailed reference
to long outdated chip sets. Textbooks have instead focused on the simpler 8088 and then have
described the computers students actually use later, as an extension and an afterthought. This is
analogous to learning automotive mechanics on a Ford Model A and only later discussing such
important concepts as catalytic converters, automatic transmissions, and key-based ignition sys-
tems. A course in architecture should not automatically be forced to be a course in the history of
computing.

Instead, I wanted to teach a course using an easy-to-understand architecture that incorporated
modern principles and could itself be useful for students. Since every computer that runs a Web
browser incorporates a copy of the JVM as software, almost every machine today already has a
compatible JVM available to it.

This book, then, covers the central aspects of computer organization and architecture: digital
logic and systems, data representation, and machine organization/architecture. It also describes the
assembly-level language of one particular architecture, the JVM, with other common architectures
such as the Intel Pentium 4 and the PowerPC given as supporting examples but not as the object of
focus. The book is designed specifically for a standard second-year course on the architecture and
organization of computers, as recommended by the IEEE Computer Society and the Association
for Computing Machinery.'

! “Computing Curricula 2001,” December 15, 2001, Final Draft; see specifically their recommendation for course
CS220.

viii Preface

How

The book consists of two parts. The first half (chapters 1-5) covers general principles of computer
organization and architecture and the art/science of programming in assembly language, using
the JVM as an illustrative example of those principles in action (How are numbers represented in
a digital computer? What does the loader do? What is involved in format conversion?), as well as
the necessary specifics of JVM assembly language programming, including a detailed discussion
of opcodes (What exactly does the i2¢ opcode do, and how does it change the stack? What's the
command to run the assembler?). The second half of the book (chapters 6-10) focuses on specific
architectural details for a variety of different CPUs, including the Pentium, its archaic and historic
cousin the 8088, the Power architecture, and the Atmel AVR as an example of a typical embedded
systems controller chip. '

For Whom \

It is my hope and belief that this framework will permit this textbook to be used by a wide
range of people and for a variety of courses. The book should successfully serve most of the
software-centric community. For those primarily interested in assembly language as the basis for
abstract study of computer science, the JVM provides a simple, easy-to-understand introduction
to the fundamental operations of computing. As the basis for a compiler theory, programming
languages, or operating systems class, the JVM is a convenient and portable platform and target
architecture, more widely available than any single chip or operating system. And as the basis for
further (platform-specific) study of individual machines, the JVM provides a useful explanatory
teaching architecture that allows for a smooth, principled transition not only to today’s Pentium,
but also to other architectures that may replace, supplant, or support the Pentium in the future.
For students, interested in learning how machines work, this textbook will provide information
on a wide variety of platforms, enhancing their ability to use whatever machines and architectures
they find in the work environment.

As noted above, the book is mainly intended for a single-semester course for second-year
undergraduates. The first four chapters present core material central to the understanding of the
principles of computer organization, architecture, and assembly language programming. They
assume some knowledge of a high-level imperative language and familiarity with high school
algebra (but not calculus). After that, professors (and students) have a certain amount of flexibility
in choosing the topics, depending upon the environment and the issues. For Intel/Windows shops,
the chapters on the 8088 and the Pentium are useful and relevant, while for schools with older
Apples or a Motorola-based microprocessor lab, the chapter on the Power architecture is more
relevant. The Atmel AVR chapter can lay the groundwork for laboratory work in an embedded
systems or microcomputer laboratory, while the advanced JVM topics will be of interest to
students planning on implementing JVM-based systems or on writing system software (compilers,
interpreters, and so forth) based on the JVM architecture. A fast-paced class might even be able to
cover all topics. The appendices are provided primarily for reference, since I believe that a good
textbook should be useful even after the class is over.

Acknowledgments

L]

Without the students at Duquesne University, and particularly my guinea pigs from the Computer
Organization and Assembly Language classes, this textbook couldn’t have happened. I am also
grateful for the support provided by my department, college, and university, and particularly for
the support funding from the Philip H. and Betty L. Wimmer Family Foundation. I would also
like to thank my readers, especially Erik Lindsley of the University of Pittsburgh, for their helpful
comments on early drafts.

Without a publisher, this book would never have seen daylight; I would therefore like to
acknowledge my editors, Tracey Dunkelberger and Kate Hargett, and through them the Prentice
Hall publishing group. I would like to express my appreciation to all of the reviewers: Mike
Litman, Western Illinois University; Noe Lopez Benitez, Texas Tech University; Larry Morell,
Arkansas Tech University; Peter Smith, California State University—Channel Islands; John Sigle,
Louisiana State University—Shreveport; and Harry Tyrer, University of Missouri-Columbia. Sim-
ilarly, without the software, this book wouldn’t exist. Aside from the obvious debt of gratitude
to the people at Sun who invented Java, I specifically would like to thank and acknowledge Jon
Meyer, the author of jasmin, both for his software and for his helpful support.

Finally, I would like to thank my wife, Jodi, who drew preliminary sketches for most of the
illustrations and, more importantly, has managed to put up with me throughout the book’s long
gestation and is still willing to live in the same house.

=Contents

Preface

‘Statement of Aims i

What Vvii
How viii
For Whom viii

Acknowledgments «

1.2

13

14

1.5

Part the First: Imaginary
Computers 1

Computation and Representation

Computation 3

1.1.1 Electronic Devices 3
1.1.2 Algorithmic Machines 4
1.1.3 Functional Components 4

Digital and Numeric Representations 9
1.2.1 Digital Representations and Bits 9

1.2.2 Boolean Logic 12

1.2.3 Bytes and Words 13

1.2.4 Representations 14

Virtual Machines 27

1.3.1 What is a “Virtual Machine”? 27
1.3.2 Portability Concerns 29

1.3.3 Transcending Limitations 30
1.3.4 Ease of Updates 30

1.3.5 Security Concerns 31

1.3.6 Disadvantages 31

Programming the JVM 32

1.4.1 Java: What the JVM Isn’t 32

1.4.2 Translations of the Sample Program 34
1.4.3 High- and Low-Level Languages 35

1.4.4 The Sample Program as the JVM Sees It 37

Chapter Review 38

¢

Xii

Contents

Py

1.6
1.7

2.1

2.2

2.3

2.4

2.5
2.6
2.7
2.8

3.1
3.2

3.3

—e

Exercises 39
Programming Exercises 41

Arithmetic Expressions 42

Notations 42

2.1.1 Instruction Sets 42

2.1.2 Operations, Operands, and Ordering 43
2.1.3 Stack-Based Calculators 43

Stored-Program Computers 45
2.2.1 The fetch-execute Cycle 45
2.2.2 CISC vs. RISC Computers 48

Arithmetic Calculations on the JVM 49
2.3.1 General Comments 49

2.3.2 A Sample Arithmetic Instruction Set 50

2.3.3 Stack Manipulation Operations 53

2.3.4 Assembly Language and Machine Code 55
2.3.5 Illegal Operations 56

An Example Program 57
24.1 An Annotated Example 57
24.2 The Final JVM Code 60

JVM Calculation Instructions Summarized 60
Chapter Review 61

Exercises 62

Programming Exercises 63

Assembly Language Programming
in jasmin 64
Java, the Programming System 64

Using the Assembler 66

3.2.1 The Assembler 66

3.2.2 Running a Program 66

3.2.3 Display to the Console vs. a Window 67
3.2.4 Using System.out and System.in 68

Assembly Language Statement Types 71
3.3.1 Instructions and Comments 71

3.3.2 Assembler Directives 72

3.3.3 Resource Directives 73

Contents

®

3.4 Example: Random Number Generation 73
3.4.1 Generating Pseudorandom Numbers 73
3.4.2 Implementation on the JVM 74
3.43 Another Implementation 76
344 Interfacing with Java Classes 77

3.5 Chapter Review 79
3.6 Exercises 79
3.7 Programming Exercises 80

4 Control Structures 82

4.1 “Everything They’ve Taught You Is Wrong” 82
4.1.1 Fetch-Execute Revisited 82
4.1.2 Branch Instructions and Labels 83
4.1.3 “Structured Programming” a Red Herring 83
4.14 High-Level Control Structures and Their Equivalents 85

4.2 Types of Gotos 86
4.2.1 Unconditional Branches 86
4.2.2 Conditional Branches 86
4.2.3 Comparison Operations 87
424 Combination Operations 88

4.3 Building Control Structures 89
4.3.1 If Statements 89
432 Loops 90
4.3.3 Details of Branch Instructions 92

4.4 Example: Syracuse Numbers 94
44.1 Problem Definition 94
442 Design 9%
443 Solution and Implementation 96

4.5 Table Jumps 97

4.6 Subroutines 101
4.6.1 Basic Instructions 101
4.6.2 Examples of Subroutines 102

4.7 Example: Monte Carlo Estimation of » 105
4.7.1 Problem Definition 105
4.7.2 Design 106
4.7.3 Solution and Implementation 109

4.8 Chapter Review 111

Xiv Contents

® a
@ =

49 Exercises 112
4.10 Programming Exercises 112

Il Part the Second: Real
Computers 113

5 General Architecture Issues:
Real Computers 115
5.1 The Limitations of a Virtual Machine 115

5.2 Optimizing the CPU 116
5.2.1 Building a Better Mousetrap 116
5.2.2 Multiprocessing 116
5.2.3 Instruction Set Optimization 117
5.2.4 Pipelining 117
5.2.5 Superscalar Architecture 120

5.3 Optimizing Memory 121
53.1 Cache Memory 121
5.3.2 Memory Management 122
5.3.3 Direct Address Translation 122
5.3.4 Page Address Translation 122

5.4 Optimizing Peripherals 124
5.4.1 The Problem with Busy-Waiting 124
5.4.2 Interrupt Handling 125
5.4.3 Communicating with the Peripherals: Using the Bus 126

5.5 Chapter Review 126
5.6 Exercises 127

6 Thelintel 8088 128
6.1 Background 128

6.2 Organization and Architecture 129
6.2.1 The Central Processing Unit 129
6.2.2 The Fetch-Execute Cycle 131
6.23 Memory 131
6.2.4 Devices and Peripherals 133

6.3 Assembly Language 133
6.3.1 Operations and Addressing 133

Contents

XV

6.4

6.5
6.6
6.7
6.8

71
7.2

7.3

7.4
7.5
7.6

7.7
7.8

6.3.2 Arithmetic Instruction Set 136

6.3.3 Floating Point Operations 137

6.3.4 Decisions and Control Structures 139
6.3.5 Advanced Operations 142

Memory Organization and Use 143
6.4.1 Addresses and Variables 143

64.2 Byte Swapping 144

6.4.3 Arrays and Strings 145

6.44 String Primitives 147

6.4.5 Local Variables and Information Hiding 150

6.4.6 System Stack 151
6.4.7 Stack Frames 152

Conical Mountains Revisited 156
Interfacing Issues 157

Chapter Review 158

Exercises 159

The Power Architecture 160

Background 160

Organization and Architecture 161
7.2.1 Central Processing Unit 162

7.2.2 Memory 163

7.2.3 Devices and Peripherals 163

Assembly Language 164

7.3.1 Arithmetic 164

7.3.2 Floating Point Operations 166

7.3.3 Comparisons and Condition Flags 166
7.3.4 Data Movement 167

7.3.5 Branches 168

Conical Mountains Revisited 169
Memory Organization and Use 170

Performance Issues 171
7.6.1 Pipelining 171

Chapter Review 174
Exercises 174

xvi

¢

Contents

e

8.1
8.2

8.3

8.4

8.5

8.6
8.7
8.8

9.1
9.2

93
9.4
9.5

9.6
9.7
9.8

The Intel Pentium 175
Background 175

Organization and Architecture 176
8.2.1 The Central Processing Unit 176

8.2.2 Memory 177

8.2.3 Devices and Peripherals 177

Assembly Language Programming 177
8.3.1 Operations and Addressing 177

8.3.2 Advanced Operations 178

8.3.3 Instruction Formats 179

Memory Organization and Use 180
8.4.1 Memory Management 180 '

Performance Issues 180
8.5.1 Pipelining 180

8.5.2 Parallel Operations 182
8.5.3 Superscalar Architecture 182

RISC vs. CISC Revisited 183
Chapter Review 184
Exercises 184

Microcontrollers: The Atmel AVR
Background 185

Organization and Architecture 186
9.2.1 Central Processing Unit 186

922 Memory 186

9.2.3 Devices and Peripherials 191

Assembly Language 192
Memory Organization and Use 193

Issues of Interfacing 195
9.5.1 Interfacing with External Devices 195
9.5.2 Interfacing with Timers 196

Designing an AVR Program 197
Chapter Review 198
Exercises 199

185

ad

Contents

Xvii

10 Advanced Programming Topics
on the JVM 200

10.1 Complex and Derived Types 200
10.1.1 The Need for Derived Types 200
10.1.2 An Example of a Derived Type: Arrays 201
10.1.3 Records: Classes Without Methods 208

10.2 Classes and Inheritance 210
10.2.1 Defining Classes 210
10.2.2 - A Sample Class: String 212
10.2.3 Implementing a String 213

10.3 Class Operations and Methods 214
10.3.1 Introduction to Class Operations 214
10.3.2 Field Operations 214
10.3.3 Methods 217
10.3.4 A Taxonomy of Classes 221

10.4 Objects 223
10.4.1 Creating Objects as Instances of Classes 223
10.4.2 Destroying Objects 224
10.4.3 The Type Object 224

10.5 Class Files and . class File Structure 224
10.5.1 Class Files 224
10.5.2 Starting Up Classes 227

10.6 Class Hierarchy Directives 227

10.7. An Annotated Example: Hello, World
Revisited 229

10.8 Input and Output: An Explanation 230
10.8.1 Problem Statement 230
10.8.2 Two Systems Contrasted 231
10.8.3 Example: Reading from the Keyboard in the JVM 234
10.8.4 Solution 235

10.9 Example: Factorials Via Recursion 236
10.9.1 Problem Statement 236
10.9.2 Design 236
10.9.3 Solution 237

10.10 Chapter Review 238
10.11 Exercises 239
10.12 Programming Exercises 239

°

