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‘Preface

Statement of Aims
What

This is a book on the organization and architecture of the Java Virtual Machine (JVM),the
software at the heart of the Java 1anguage and is found inside most computers, Web browsers,
PDAs, and networked accessories. It also covers general principles of machine organization and
archifecture, with llustrations from other popular (and not-so-popular) computers.

It is not a book on Java, the programming language, although some knowledge of Java or a
Java-like language (C, C++, Pascal, Algol, etc.) may be helpful. Instead, it is a book about how
the Java language actually causes things to happen and computations to occur.

This book got its start as an experiment in modern technology. When I started teaching
at my present university (1998), the organization and architecture course focused on the 8088
running MS-DOS—essentially a programming environment as old as the sophomores taking
the class. (This temporal freezing is unfortunately fairly common; when I took the same class
during my undergraduate days, the computer whose architecture I studied was only two years
younger than I was.) The fundamental problem is that the modern Pentium 4 chip isn’t a par-
ticularly good teaching architecture; it incorporates all the functionality of the twenty-year-old
8088, including its limitations, and then provides complex workarounds. Because of this com-
plexity issue, it is difficult to explain the workings of the Pentium 4 without detailed reference
to long outdated chip sets. Textbooks have instead focused on the simpler 8088 and then have
described the computers students actually use later, as an extension and an afterthought. This is
analogous to learning automotive mechanics on a Ford Model A and only later discussing such
important concepts as catalytic converters, automatic transmissions, and key-based ignition sys-
tems. A course in architecture should not automatically be forced to be a course in the history of
computing.

Instead, I wanted to teach a course using an easy-to-understand architecture that incorporated
modern principles and could itself be useful for students. Since every computer that runs a Web
browser incorporates a copy of the JVM as software, almost every machine today already has a
compatible JVM available to it.

This book, then, covers the central aspects of computer organization and architecture: digital
logic and systems, data representation, and machine organization/architecture. It also describes the
assembly-level language of one particular architecture, the JVM, with other common architectures
such as the Intel Pentium 4 and the PowerPC given as supporting examples but not as the object of
focus. The book is designed specifically for a standard second-year course on the architecture and
organization of computers, as recommended by the IEEE Computer Society and the Association
for Computing Machinery.'

! “Computing Curricula 2001,” December 15, 2001, Final Draft; see specifically their recommendation for course
CS220.



viii Preface

How

The book consists of two parts. The first half (chapters 1-5) covers general principles of computer
organization and architecture and the art/science of programming in assembly language, using
the JVM as an illustrative example of those principles in action (How are numbers represented in
a digital computer? What does the loader do? What is involved in format conversion?), as well as
the necessary specifics of JVM assembly language programming, including a detailed discussion
of opcodes (What exactly does the i2¢ opcode do, and how does it change the stack? What's the
command to run the assembler?). The second half of the book (chapters 6-10) focuses on specific
architectural details for a variety of different CPUs, including the Pentium, its archaic and historic
cousin the 8088, the Power architecture, and the Atmel AVR as an example of a typical embedded
systems controller chip. '

For Whom \

It is my hope and belief that this framework will permit this textbook to be used by a wide
range of people and for a variety of courses. The book should successfully serve most of the
software-centric community. For those primarily interested in assembly language as the basis for
abstract study of computer science, the JVM provides a simple, easy-to-understand introduction
to the fundamental operations of computing. As the basis for a compiler theory, programming
languages, or operating systems class, the JVM is a convenient and portable platform and target
architecture, more widely available than any single chip or operating system. And as the basis for
further (platform-specific) study of individual machines, the JVM provides a useful explanatory
teaching architecture that allows for a smooth, principled transition not only to today’s Pentium,
but also to other architectures that may replace, supplant, or support the Pentium in the future.
For students, interested in learning how machines work, this textbook will provide information
on a wide variety of platforms, enhancing their ability to use whatever machines and architectures
they find in the work environment.

As noted above, the book is mainly intended for a single-semester course for second-year
undergraduates. The first four chapters present core material central to the understanding of the
principles of computer organization, architecture, and assembly language programming. They
assume some knowledge of a high-level imperative language and familiarity with high school
algebra (but not calculus). After that, professors (and students) have a certain amount of flexibility
in choosing the topics, depending upon the environment and the issues. For Intel/Windows shops,
the chapters on the 8088 and the Pentium are useful and relevant, while for schools with older
Apples or a Motorola-based microprocessor lab, the chapter on the Power architecture is more
relevant. The Atmel AVR chapter can lay the groundwork for laboratory work in an embedded
systems or microcomputer laboratory, while the advanced JVM topics will be of interest to
students planning on implementing JVM-based systems or on writing system software (compilers,
interpreters, and so forth) based on the JVM architecture. A fast-paced class might even be able to
cover all topics. The appendices are provided primarily for reference, since I believe that a good
textbook should be useful even after the class is over.
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