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Introduction to Volume 1 — Foundations and
Integral Representations

Partial differential equations equally appear in physics and geometry. Within
mathematics they unite the areas of complex analysis, differential geome-
try and calculus of variations. The investigation of partial differential equa-
tions has substantially contributed to the development of functional analysis.
Though a relatively uniform treatment of ordinary differential equations is
possible, quite multiple and diverse methods are available for partial differen-
tial equations. With this two-volume textbook we intend to present the entire
domain PARTIAL DIFFERENTIAL EQUATIONS — so rich in theories and applica-
tions — to students at the intermediate level. We presuppose a basic knowledge
of Analysis, as it is conveyed in S. Hildebrandt’s very beautiful lectures [Hil,2]
or in the lecture notes [S1,2] or in W. Rudin’s influential textbook [R]. For the
convenience of the reader we develop further foundations from Analysis in a
form adequate to the theory of partial differential equations. Therefore, this
textbook can be used for a course extending over several semesters. A survey
of all the topics treated is provided by the table of contents. For advanced
readers, each chapter may be studied independently from the others.

Selecting the topics of bur lectures and consequently for our textbooks, I tried
to follow the advice of one of the first great scientists — of the Enlightenment
- at the University of Géttingen, namely G.C. Lichtenberg: Teach the students
h o w they think and not w h a t they think! As a student at this University,
I admired the commemorative plates throughout the city in honor of many
great physicists and mathematicians. In this spirit I attribute the results and
theorems in our compendium to the persons creating them — to the best of
my knowledge.

We would like to mention that this textbook is a translated and expanded ver-
sion of the monograph by Friedrich Sauvigny: Partielle Differentialgleichun-
gen der Geometrie und der Physik 1 — Grundlagen und Integraldarstellungen
— Unter Beriicksichtigung der Vorlesungen von E. Heinz, which appeared in
Springer- Verlag in 2004.
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In Chapter I we treat Differentiation and Integration on Manifolds, where we
use the improper Riemannian integral. After the Weierstrassian approxima-
tion theorem in §1 , we introduce differential forms in § 2 as functionals on
surfaces — parallel to [R]. Their calculus rules are immediately derived from the
determinant laws and the transformation formula for multiple integrals. With
the partition of unity and an adequate approximation we prove the Stokes
integral theorem for manifolds in § 4 , which may possess singular boundaries
of capacity zero besides their regular boundaries. In §5 we especially obtain
the Gaussian integral theorem for singular domains as in [H1], which is indis-
pensable for the theory of partial differential equations. After the discussion
of contour integrals in §6 , we shall follow [GL] in § 7 and represent A. Weil’s
proof of the Poincaré lemma. In § 8 we shall explicitly construct the *-operator
for certain differential forms in order to define the Beltrami operators. Finally,
we represent the Laplace operator in n-dimensional spherical coordinates.

In Chapter II we shall constructively supply the Foundations of Functional
Analysis. Having presented Daniell’s integral in §1 , we shall continue the
Riemannian integral to the Lebesgue integral in § 2. The latter is distinguished
by convergence theorems for pointwise convergent sequences of functions. We
deduce the theories of Lebesgue measurable sets and functions in a natural
way; see §3 and §4. In §5 we compare Lebesgue’s with Riemann’s integral.
Then we consider Banach and Hilbert spaces in §6 , and in § 7 we present the
Lebesgue spaces LP(X) as classical Banach spaces. Especially important are
the selection theorems with respect to almost everywhere convergence due to
H. Lebesgue and with respect to weak convergence due to D. Hilbert. Following
ideas of J. v. Neumann we investigate bounded linear functionals on LP(X) in
§8 . For this Chapter I have profited from a seminar on functional analysis,
offered to us as students by my academic teacher, Professor Dr.E. Heinz in
Gottingen.

In Chapter III we shall study topological properties of mappings in R™ and
solve nonlinear systems, of equations. In this context we utilize Brouwer's
degree of mapping, for which E. Heinz has given an ingenious integral repre-
sentation (compare [H8]). Besides the fundamental properties of the degree of
mapping, we obtain the classical results of topology. For instance, the theorems
of Poincaré on spherical vector-fields and of Jordan-Brouwer on topological
spheres in R appear. The case n = 2 reduces to the theory of the winding
number. In this chapter we essentially follow the first part of the lecture on
fixed point theorems [H4] by E. Heinz.

In Chapter IV we develop the theory of holomorphic functions in one and
several complex variables. Since we utilize the Stokes integral theorem, we
easily attain the well-known theorems from the classical theory of functions
in §2 and §3. In the subsequent paragraphs we additionally study solutions
of the inhomogeneous Cauchy-Riemann differential equation, which has been
completely investigated by L. Bers and 1. N. Vekua (see [V]) . In § 6 we assemble
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statements on pseudoholomorphic functions, which are similar to holomorphic
functions as far as the behavior at their zeroes is concerned. In §7 we prove
the Riemannian mapping theorem with an extremal method due to Koebe
and investigate in § 8 the boundary behavior of conformal mappings. In this
chapter we intend to convey, to some degree, the splendor of the lecture [Gr]
by H. Grauert on complex analysis.

Chapter V is devoted to the study of Potential Theory in R”. With the aid of
the Gaussian integral theorem we investigate Poisson’s differential equation in
§1 and §2, and we establish an analyticity theorem. With Perron’s method
we solve the Dirichlet problem for Laplace’s equation in §3. Starting with
Poisson’s integral representation we develop the theory of spherical harmonic
functions in R™; see §4 and § 5 . This theory was founded by Legendre, and we
owe this elegant representation to G.Herglotz. In this chapter as well, | was
able to profit decisively from the lecture [H2] on partial differential equations
by my academic teacher, Professor Dr. E. Heinz in Gottingen.

In Chapter VI we consider linear partial differential equations in R®. We prove
the maximum principle for elliptic differential equations in §1 and apply this
central tool on quasilinear, elliptic differential equations in §2 (compare the
lecture [H6]). In §3 we turn to the heat equation and present the parabolic
maximum-minimum principle. Then in § 4 , we comprehend the significance of
characteristic surfaces and establish an energy estimate for the wave equation.
In § 5 we solve the Cauchy initial value problem of the wave equation in R™ for
the dimensions n = 1, 3,2. With the aid of Abel’s integral equation we solve
this problem for all » > 2 in § 6 (compare the lecture [H5]). Then we consider
the inhomogeneous wave equation and an initial-boundary-value problem in
§7 . For parabolic and hyperbolic equations we recommend the textbooks
[GuLe] and [J]. Finally, we classify the linear partial differential equations
of second order in §8. We discover the Lorentz transformations as invariant
transformations for the wave equation (compare [G]).

With Chapters V and VI we intend to give a geometrically oriented introduc-
tion into the theory of partial differential equations without assuming prior
functional analytic knowledge.

It is a pleasure to express my gratitude to Dr. Steffen Frohlich and to Dr. Frank
Miiller for their immense help with taking the lecture notes in the Branden-
burgische Technische Universitat Cottbus, which are basic to this monograph.
For many valuable hints and comments and the production of the whole TX-
manuscript I express my cordial thanks to Dr. Frank Miiller. He has elaborated
this textbook in a superb way.

Furthermore, I owe to Mrs. Prescott valuable recommendations to improve the

style of the language. Moreover, I would like to express my gratitude to the
referee of the English edition for his proposal, to add some historical notices
and pictures, as well as to Professor Dr. M. Fréhner for his help, to incorporate
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the graphics into this textbook. Finally, I thank Herrn C.Heine and all the
other members of Springer-Verlag for their collaboration and confidence.

Last but not least, I would like to acknowledge gratefully the continuous

support of my wife, Magdalene Frewer-Sauvigny in our University Library
and at home.

Cottbus, in May 2006 Friedrich Sauvigny
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I

Differentiation and Integration on Manifolds

In this chapter we lay the foundations for our treatise on partial differential
equations. A detailed description for the contents of Chapter I is given in the
Introduction to Volume 1 above. At first, we fix some familiar notations used
throughout the two volumes of our textbook.

By the symbol R™ we denote the n-dimensional Euclidean space with the

points x = (zy,...,T,) where r; € R, and we define their modulus
n , i
o= (L)
i=1 ,

In general, we denote open subsets in R™ by the symbol £2. By the symbol M

we indicate the topological closure and by AC;I the open kernel of a set M C R".
In the sequel, we shall use the following linear spaces of functions:

CcoR)...... continuous functions on {2

Ck()...... k-times continuously differentiable functions on 2

ckm)...... k-times continuously differentiable functions f on 2 with the
compact support suppf = {z € 2: f(z) #0} C 2

ck(@)...... k-times continuously differentiable functions on {2, whose

derivatives up to the order £ can be continuously extended
onto the closure 2

Ck(2U6).. k-times continuously differentiable functions f on 2, whose
derivatives up to the order & can be extended onto the closure
2 continuously with the property supp f C 2U 8

Cl(+,K) ... space of functions as above with values in K = R™ or K = C.

Finally, we utilize the notations

Vu......... gradient (ug,,...,uz,) of a function v = u(xy,...,z,) €
CHR™)



2 I Differentiation and Integration on Manifolds

g
Au......... Laplace operator Y ug,z, of a function u € C2(R™)
i=1

N functional determinant or Jacobian of a function f : R® —
R" € C}(R*,R™).

81 The Weierstra3 approximation theorem

Let 2 ¢ R™ with n € N denote an open set and f(z) € C*(£2) with k €
NuU {0} =: Ny a k-times continuously differentiable function. We intend to
prove the following statement:

There exists a sequence of polynomials p,(z), z € R® for m = 1,2, ... which
converges on each compact subset C C §2 uniformly towards the function f(z).
Furthermore, all partial derivatives up to the order & of the polynomials p,,
converge uniformly on C towards the corresponding derivatives of the function
f. The coefficients of the polynomials p,, depend on the approximation, in
general. If this were not the case, the function

1
exp (——5> , x>0

flz) = z
0, z<0

could be expanded into a power series. However, this leads to the evident
contradiction:

_ = f®(0)
°=kz_:0 Pk

In the following Proposition, we introduce a ’mollifier’ which enables us to
smooth functions.

Proposition 1. We consider the following function to each £ > 0, namely
1 |22
K (2) = —5 -
@)= gz (-2)
_ 1 1 2 2 n
_ﬁnexp( €(z,-{=...+zn)), z € R™ '
Then this function K. = K(2) possesses the following properties:
1. We have K.(z) > 0 for all z € R™;
2. The condition / K (z)dz =1 holds true;
Rn
3. For each § > 0 we observe: 1il’51+ Ke(z)dz = 0.
|2|>6
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Proof:

1. The exponential function is positive, and the statement is obvious.
2. We substitute z = /ez with dz = \/£" dx and calculate

/K () de = — /exp( W) d
e =—= -—) dz
£
in \/7['6 in
+o0

= %ﬁlexp(—lxl2) dz = (% /exp(—tg) dt) =1

—00

3. We utilize the substitution from part 2 of our proof and obtain

/ Ks(z)dz=% / exp(—|:c|2)d:v——>0 for €—0+.
™
|z|>6 |2|>68//E q.ed.

Proposition 2. Let us consider f(z) € CJ(R™) and additionally the function

fu(@) = / K.ly-2)f(y)dy, zeR"
]Rh

for e > 0. Then we infer

sup |fe(z) — f(z)] — 0 for -0+,

zER™
and consequently the functions fc(x) converge uniformly on the space R™ to-
wards the function f(z).

Proof: On account of its compact support, the function f(z) is uniformly
continuous on the space R”. The number 5 > 0 being given, we find a number
0 = d(n) > 0 such that

Yy R, Jr-y[<d = |f(z)-fly)l <
Since f is bounded, we find a quantity £9 = £9(n) > 0 satisfying

2 sup | ()| / K.y—z)dy<n forall 0<e<ep
yER"
ly—z|>48

We note that

1) = @) = | [ Kty =) 1) dy = £@) [ Kty = o)
Rn Rn

<| [ Kew-2)00) - f@} |

ly—=z|<6

[ Kv-o) () - s

ly—z|28
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and we arrive at the following estimate for all points z € R™ and all numbers
0 < € < €9, namely

Ifelz) = f(z)] < / Ke(y - 2) |f(y) — f(z)] dy

ly—=x|<é
/ Ke(y - 2) {1f()] + | (2)]} dy
ly—=zl26
<n+2 sup |f(y)l / K (y—z)dy < 2n.
yER"

ly—=z|>6
We summarize our considerations to

sup |fe(z) — f(x)] — O for e —>0+.

ZER™

q.ed.
In the sequel, we need
Proposition 3. (Partial integration in R")

When the functions f(z) € CL(R™) and g(z) € C1(R") are given, we infer

t=1,...,n

[ s(@) g1tz do =

Rn

Proof: On account of the property f(z) € C}(R™), we find a radius r > 0 such
that f(z) = 0 and f(z)g(z) = 0 is correct for all points z € R® with |z;| > r
for one index j € {1, ...,n} at least. The fundamental theorem of differential-
and integral-calculus yields

/ o { flale)} o
/r /(/3 f(x)g(z}d"’) co.dri1dTiy .. dr, = 0.

This implies

g(z)dz.
qg.ed.

a {re@)} ds = [ o015 fi)do+
R™ R»

Proposition 4. Let the function f(z) € CE(R™ C) with k € Ny be given.
Then we have a sequence of polynomials with complex coefficients
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N(m)
pm(z) = Z g'l")J .1:'7l sxlr for m=1,2,...
F14e-0dn=0

such that the limsit relations
D%pp(z) — D*f(z) for m—o0, |af<k

are satisfled uniformly in each ball Bg := {z € R" : |z| < R} with the
radius 0 < R < +00. Here we define the differential operator D* with o =
(a1y...,0m) by

o el
D I=m, [al:=a1+...+a,,,

where a1, . ..,an > 0 represent nonnegative integers.

Proof: We differentiate the function fc(z) with respect to the variables x;,
and together with Proposition 3 we see

st = [{ o Kty | s

Rn

- [{Ketv- 2} 1) dy

R»

3
=R/n.Ke(y—x)5y—i (y) dy

for i = 1,...,n. By repeated application of this device, we arrive at

Df(x) = / K.(y—2)D*f(y)dy, o] <k.

Here we note that D f(y) € CJ(R™) holds true. Due to Proposition 2, the
family of functions D*f,(z) converges uniformly on the space R" towards
D f(z) - for all ja] < k - when € — 0+ holds true. Now we choose the radius
R > 0 such that supp f C Bp is valid. Taking the number £ > 0 as fixed, we
consider the power series

_ 1 22 1 1 |2
KE(Z)“\/%E""""(‘?)‘\/E",._gﬁ( ) ’

which converges uniformly in Byg. Therefore, each number € > 0 possesses
an index Ny = Ny(e, R) such that the polynomial

No(e,R)

N7 =0 J! €
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is subject to the following estimate:

sup |Ke(z) — Pep(2)| <e.
|zIS2R

With the expression
For@) = [ Peaty-=)f)dy
Rn

we obtain a polynomial in the variables zy, ..., z, - for each ¢ > 0. Further-
more, we deduce

D, plz) = / P.p(y—-2)D*f(y)dy forall zeR" |af <k.
]Rn

Now we arrive at the subsequent estimate for all |a| < k and |z| < R, namely

D@ - DFen(@) = | [ {Kelw—2) - Punly —2)} D1 () |

lyI<R
< / Ke(y - 2) — P a(y — 2)||D°f(3)| dy
lyiI<R
<e / D% £(y)| dy.

lyI<R

Therefore, the polynomials D> f:,R(:c) converge uniformly on Bg towards the
derivatives D*f(z). Choosing the null-sequence ¢ = # with m = 1,2,...,
we obtain an approximating sequence of polynomials p,, g(z) := f_x_ r(z) in
Bgr, which is still dependent on the radius R. We take r = 1,2,.. and find
polynomials p, = p,, » satisfying

sup |D%;,(z) — D*f(z)| < 1 for all |a| <k
zEB, T

The sequence p, satisfies all the properties stated above. q.ed.

We are now prepared to prove the fundamental

Theorem 1. (The Weierstrafi approximation theorem)

Let 2 C R™ denote an open set and f(z) € C*(£2,C) a function with the
degree of regularity k € Ng. Then we have a sequence of polynomials with
complez coefficients of the degree N(m) € Ny, namely

N(m) ,
fm(z) = Z cg.’:.’.).j“:v’l‘ R A zeR®, m=12... ,
jly~-~vjn=0



