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Preface

Aims

The aim of this book is to provide a guide to a rich and fascinating sub-
ject: algebraic curves, and how they vary in families. The revolution
that the field of algebraic geometry has undergone with the introduc-
tion of schemes, together with new ideas, techniques and viewpoints
introduced by Mumford and others, have made it possible for us to
understand the behavior of curves in ways that simply were not possi-
ble a half-century ago. This in turn has led, over the last few decades,
to a burst of activity in the area, resolving long-standing problems
and generating new and unforeseen results and questions. We hope
to acquaint you both with these results and with the ideas that have
made them possible.

The book isn't intended to be a definitive reference: the subject is
developing too rapidly for that to be a feasible goal, even if we had
the expertise necessary for the task. Our preference has been to fo-
cus on examples and applications rather than on foundations. When
discussing techniques we've chosen to sacrifice proofs of some, even
basic, results — particularly where we can provide a good reference —
in order to show how the methods are used to study moduli of curves.
Likewise, we often prove results in special cases which we feel bring
out the important ideas with a minimum of technical complication.

Chapters 1 and 2 provide a synopsis of basic theorems and conjec-
tures about Hilbert schemes and moduli spaces of curves, with few
or no details about technigues or proofs. Use them more as a guide
to the literature than as a working manual. Chapters 3 through 6 are,
by contrast, considerably more self-contained and approachable. Ul-
timately, if you want to investigate fully any of the topics we discuss,
you'll have to go beyond the material here; but you will learn the tech-
niques fully enough, and see enough complete proofs, that when you
finish a section here you'll be equipped te go exploring on your own.

If your goal is to work with families of curves, we'd therefore suggest
that you begin by skimming the first two chapters and then tackle the
later chapters in detail, referring back to the first two as necessary.
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Contents

As for the contents of the book: Chapters 1 and 2 are largely exposi-
tory: for the most part, we discuss in general terms the problems as-
sociated with moduli and parameter spaces of curves, what's known
about them, and what sort of behavior we've come to expect from
themn. In Chapters 3 through 5 we develop the techniques that have
allowed us to analyze moduli spaces: deformations, specializations
(of curves, of maps between them and of linear series on them), tools
for making a variety of global enumerative calculations, geometric in-
variant theory, and so on. Finally, in Chapter 6, we use the ideas and
techniques introduced in preceding chapters to prove a number of
basic results about the geometry of the moduli space of curves and
about various related spaces.

Prerequisites

What sort of background do we expect you to have before you start
reading? That depends on what you want to get out of the book. We'd
hope that even if you have only a basic grounding in modern algebraic
geometry and a slightly greater familiarity with the theory of a fixed
algebraic curve, you could read through most of this book and get a
sense of what the subject is about: what sort of questions we ask, and
some of the ways we go about answering them. If your ambition is
to work in this area, of course, you'll need to know more; a working
knowledge with many of the topics covered in Geometry of algebraic
curves, 1]7] first and foremost. We could compile a lengthy list of other
subjects with which some acquaintance would be helpful. But, instead,
we encourage you to just plunge ahead and fill in the background as
needed; again, we've tried to write the book in a style that makes such
an approach feasible.

Navigation

In keeping with the informal aims of the book, we have used only
two levels of numbering with arabic for chapters and capital letters
for sections within each chapter. All labelled items in the book are
numbered consecutively within each chapter: thus, the orderings of
such items by label and by position in the book agree,

There is a single index. However, its first page consists of a list
of symbols, giving for each a single defining occurrence. These, and
other, references to symbols also appear in the main body of the index
where they are alphabetized “as read”: for example, references to M,
will be found under Mgbar; to k; under kappai. Bold face entries in the
main body index point to the defining occurrence of the cited term.
References to all the main results stated in the book can be found
under the heading theorems.
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Chapter 1

Parameter spaces:
constructions and examples

A Parameters and moduli

Before we take up any of the constructions that will occupy us in
this chapter, we want to make a few general remarks about moduli
problems in general.

What is a moduli problem? Typically, it consists of two things. First
of all, we specify a class of objects (which could be schemes, sheaves,
morphisms or combinations of these), together with a notion of what
it means to have a family of these objects over a scheme B. Second, we
choose a (possibly trivial) equivalence relation ~ on the set S(B) of all
such families over each B. We use the rather vague term “object” de-
liberately because the possibilities we have in mind are wide-ranging.
For example, we might take our families to be

1. smooth flat morphisms C— B whose fibers are smooth curves
of genus g, or

2. subschemes C in P” x B, flat over B, whose fibers over B are
curves of fixed genus g and degree d,

and so on. We can loosely consider the elements of S(Spec(C)) as the
objects of our moduli problem and the elements of $(B) over other
bases as families of such objects parameterized by the complex points
of B.1

The equivalence relations we will wish to consider will vary consid-
erably even for a fixed class of objects: in the second case cited above,
we might wish to consider two families equivalent if

1More generally, we may consider elements of 5{Spec(k)) for any field k as objects
of our moduli problem defined over k.
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1. the two subschemes of P" x B are equal,
2. the two subcurves are projectively equivalent over B, or
3. the two curves are (biregularly) isomorphic over B.

In any case, we build a functor F from the category of schemes to that
of sets by the rule
F(B) = S(B)/ ~

and call F the moduli functor of our moduli problem.

The fundamental first question to answer in studying a given moduli
problem is: to what extent is the functor F representable? Recall that
F is representable in the category of schemes if there is a scheme M
and an isomorphism ¥ (of functors from schemes to sets) between F
and the functor of points of M. This last is the functor Mory whose
value on B is the set Mory, (B, M) of all morphisms of schemes from
B to M.

DEFINITION (1.1) If F is representable by M, then we say that the
scheme M is a fine moduli space for the moduli problem F.

Representability has a number of happy consequences for the study
of F. If @ : D—B is any family in (i.e., any element of) S(B), then
X = Y(@) is a morphism from B to M. Intuitively, (closed) points of
M classify the objects of our moduli problem and the map x sends
a (closed) point b of B to the moduli point in M determined by the
fiber Dy, of D over b. Going the other way, pulling back the identity
map of M itself via ¥ constructs a family 1 : T— M in S (M) called the
universal family. The reason for this name is that, given any morphism
X : B—M defined as above, there is a commutative fiber-product
diagram

D T
(1.2) @ 1
B—X . M

with ¢ : D—B in S(B) and ¥Y(@) = x. In sum, every family over B is
the pullback of T via a unique map of B to M and we have a perfect
dictionary enabling us to transiate between information about the ge-
ometry of families of our moduli problem and information about the
geometry of the moduli space M itself. One of the main themes of
moduli theory is to bring information about the objects of our moduli
problem to bear on the study of families and vice versa: the dictionary
above is a powerful tool for relating these two types of information.
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Unfortunately, few natural moduli functors are representable by
schemes: we’ll look at the reasons for this failure in the next chap-
ter. One response to this failure is to look for a larger category (e.g.,
algebraic spaces, algebraic stacks, ...) in which F can be represented:
the investigation of this avenue will also be postponed until the next
chapter. Here we wish to glance briefly at a second strategy: to find a
scheme M that captures enough of the information in the functor F
to provide us with a “concise edition” of the dictionary above.

The standard way to do this is to ask only for a natural transfor-
mation of functors ¥ = ¥ from F to Mor(-, M) rather than an iso-
morphism. Then, for each family ¢ : D— B in $(B), we still have a
morphism x = Y(¢) : B—+ M as above. Moreover, these maps are still
natural in that, if @’ : D' = D xg B'— B’ is the base change by a
map & : B'— B, then X' = Y(@') = ¥(@) o £. This requirement, how-
ever, is far from determining M. Indeed, given any solution (M, ¥)
and any morphism 1 : M— M’, we get another solution (M', 17 o ¥).
For example, we could always take M’ to equal Spec(C) and ¥(@) to
be the unique morphism B— Spec(C) and then our dictionary would
have only blank pages; or, we could take the disjoint union of the
“right” M with any other scheme. We can rule such cases out by re-
quiring that the complex points of M correspond bijectively to the
objects of our moduli problem. This still doesn’t fix the scheme struc-
ture on M: it leaves us the freedom to compose, as above, with a map
m: M—M as long as m itself is bijective on complex points. For ex-
ample, we would certainly want the moduli space M of lines through
the origin in €2 to be P! but our requirements so far don't exclude
the possibility of taking instead the cuspidal rational curve M’ with
equation y?z = x3 in P? which is the image of P! under the map
[a, b]—[a?b, a3, b3]. This pathology can be eliminated by requir-
ing that ‘M be universal with respect to the existence of the natural
transformation Y¥: cf. the first exercise below. When all this holds, we
say that (M, Y), or more frequently M, is a coarse moduli space for
the functor F. Formally,

DEFINITION (1.3) A scheme M and a natural transformation ¥ from
the functor F to the functor of points Morxy of M are a coarse moduli
space for the functor F if

1) The map Yspec(c) : F(Spec(C)) — M(C) = Mor(Spec(C), M) is a
set bijection.

2) Given another scheme M’ and a natural transformation ¥
fromF— Moray, there is a unique morphism : M— M’ such that

20r more generally require this with C replaced by any algebraically closed field.



