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For our parents



From the Original (1979)
Preface

Long ago (or so it seems today), Chung wrote on page 196 of his book [1]:
‘One wonders if the present theory of stochastic processes is not still too difficult
for applications.” Advances in the theory since that time have been phenomenal,
but these have been accompanied by an increase in the technical difficulty of
the subject so bewildering as to give a quaint charm to Chung’s use of the word
‘still’. Meyer writes in the preface to his definitive account of stochastic integral
theory:*...il faut...un cours de six mois sur les définitions. Que peut on y faire?”

[ have thought up as intuitive a picture of the subject as 1 can, written it
down at speed, and refused to be lured back by piety (or even by wit!) to cancel
half a line. ‘First’ intuition, which is what you need when you are learning the
subject, is raw, rough and ready; and, as you have guessed, I make the excuse
that it demands a compatible style and lack of polish.

Note that I wrote ‘first intuition’. Consider an example. Meyer's concept of
a right process is exactly right for Markov process theory, but the concept is
the result of a long evolution. To understand it properly, you need a highly
developed intuition, and that takes time to acquire. The difficulty with the best
advanced literature is that its authors have too much intuition; never make the
mistake of thinking otherwise.

My aim then is to sharpen your intuition to a point where the advanced
abstract literature becomes accessible, enjoyable and ‘relevant’. Like my expository
article [1], this is a missionary tract not a theological treatise. (Those of you
who have read my article [ 1] will see that this book often follows it very closely,
except that now I have the time and the duty to be more obviously appreciative
of the abstract theory!)

I believe that, in the end, it is applications which justify mathematics. The
‘artistic’ justification of pure mathematics in terms of intrinsic qualities like
elegance and generality rings rather hollow in my ears when I compare the best
mathematics with the greatest music. Many applied workers will regard this
book as extremely ‘pure’, but [ see it as one stage in shunting pure theory over
towards applications. The shunting is not always necessary: time and again, one
finds ‘applied’ papers which ‘solve’ problems long since solved for ‘purely



viii FROM THE ORIGINAL (1979) PREFACE

theoretical’ purposes. Moral: the pure/applied division of probability theory (as
of mathematics in general) is a nonsense.

Acknowledgements. This is an appropriate place at which to thank David
Kendall and Harry Reuter for teaching me probability theory and for giving
me an enthusiasm for the subject which is wearing well. My best way to thank
them is to try to share that enthusiasm.

I have to say another huge ‘thank you' to David Kendall for the immense
amount of work he has done in making editorial comments on the original
manuscript. I now see that my determination to convey a sense of adventure
did need to be tempered by a greater concern for the reader’s sense of security.
So I have acceded to many of David Kendall's requests for ‘more details": and
as a result, you will learn more techniques of calculation and have a clearer
idea of several concepts. (But I still see it as part of my job to keep you on
your toes!)

I'am very grateful to Ronald Getoor and André Meyer for clearing up some
confusions.

[ have been extremely fortunate in having been able to rely on the superb
typing skills of Sheila Campbell, Eileen Jenkins and Gladys Maddocks; my
thanks and best wishes to them.

I thank Springer-Verlag and the authors for granting me permission to quote
from Chung [1] in Section I111.44, from Getoor [1] in Section 111.54, and from
Chung [1] and Meyer [1] earlier in ths preface.

Finally, I have to thank James Cameron and Wiley for encouragement and
great patience; and subeditors, copy-editors, and printers, whose skills have
much impressed me.

David Williams
Swansea, 1978



Preface to the Second
Edition

This second edition differs profoundly from the first—and not only in having
two authors rather than one. We retain the Gallic tradition of dividing the
volume into three massive chapters: Chapter I, which says why the subject is
worth studying; Chapter I1, which provides background; and Chapter I11, which
presents an account of Markov processes. Chapter I is now much more extensive
and wide-ranging, and covers much work done since the first edition appeared.
Chapter I1 is now a highly systematic account, with detailed proofs, of what
every young probabilist must know. It is rather unashamedly a sequel to DW’s
Probability with Martingales, Cambridge University Press having been very
generous in allowing us to follow that account closely (but without many proofs,
without the examples, etc.). It is perfectly possible to read Chapter I1 before
Chapter I if you so wish. We would suggest however that you try things in the
order ‘heuristics then rigour”:

‘Our doubts are traitors,
And make us lose the good we oft might win,
Through fearing to attempt.

(W. Shakespeare, Measure for Measure.)

Chapter I1I seems to have been regarded as the most successful part of the
original; and it is reproduced here without much modification (except that some
of the functional analysis is given fuller treatment). It was always intended as
a missionary tract on Markov processes. The full theory may be found in Sharpe
[1] and in the final two volumes of the probabilist’s bible, Dellacherie and
Meyer [1]. All kinds of important developments are ignored in Chapter III:
they would require another complete volume, and will be, or are, covered by
greater experts. Dawson’s eagerly awaited treatment [1] of measure-valued
processes has now appeared; Mark Davis has a very nice new book [4] on
piecewise-deterministic Markov processes; and so on. You can access the huge
literature on measure-valued processes via Dawson’s account.

The musical allusions in the first edition have been excised. Apparently many
people found them annoying. ‘Would David Williams like a book on mathematics
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filled with references to baseball?, they say. (To which the answer is, of course,
‘Yes.’) So, this is Mathematics all the way from A to Zzzz—or from Q on, if
you want to be rigorous.

Our thanks to Sue Collins and Wolfgang Stummer, and to other colleagues
at Bath, Cambridge, and Queen Mary and Westfield College, London. Our
thanks too to Helen Ramsey and other Wiley staff for suggesting this new
version; and the copy-editor and printer whose skills have impressed us.

Chris Rogers
David Williams
November 1993



Some Frequently Used
Notation

We use “=' te mean ‘is defined to equal’. This Pascal notation can also be used
in reverse. We define

Z*=1{0,1,2,..}2{1,2,3,...} =N,
R*:=[0,0), R*""=(0,0) Q" =QnR"

We neaten layout, asd make things easier for our printers, by the use of
alternative notations:

X(t;,w) for X, (@), “duy for fo, F(FHfor 7y, P, f(x) for (P, f)(x).

etc. ane things are underway, such switches in notation will be made without
comment. The composition notation

feg(t):= flg())

will often be used for tidiness.
If f and g are real numbers or real-valued functions, we define

fvg:=max(f,g. fag=min(f.g). [fT=/fv0, [ =(=f)/0:
hence f=f* —f and |fl=f"+f".

If # is a set of real-valued functions, we write
™ for the set of non-negative elements of #*,
b# " for the set of bounded elements in .
If ¥ is a o-algebra, we write
mX for the set of real-valued (or perhaps [, «c]-valued)
Y-measurable functions,
bX for the space of bounded X-measurable functions.
IfSisa lopological‘ space, we write

C(S) for the sp:ic’e of all continuous functions from S to R.
C,(S) for the space of all bounded continuous functions from S to R.



XX SOME FREQUENTLY USED NOTATION
Monotone convergence. We write 'sT1 to signify that s—t,s<r; and STTe to
signify that s s, s <. If (s,) 1s a sequence then ‘s, 1¢’ signifies that s, —¢,5, <
n+1 <t while ‘s, 171 signifies that s, — ¢, 5, <8,y <t.If f,and f are real-valued

functions then (for example) J:1lim f, signifies that f,1f pointwise.
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