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Preface

Creating commercial software requires excellent knowledge and skills in a number of
areas, not just programming language syntax and semantics. We have therefore written a
book that teaches the fundamentals of Java programming in the context of object-orient-
ed software engineering and a Unified-Process-based software development methodolo-
gy. Today’s programmers need to be software engineers who knw their languages and
tools, certainly, but who also understand object-oriented analysis and design, software
quality asurance, and software project management. In fact, the best antidote to the
outsourcing of software development jobs overseas is to elevate the profession above the
specialist tasks of code development. Software engineers need to have the skills to deliv-
er quality software on time, on budget, and according to stakeholder requirements. Qur
book puts the study of Java in this meaningful, valuable context.

Audience

College students with a previous course in programming or software engineering
learning their first or second computer programming language are the primary audi-
ence for this textbook. Some previous exposure to principles of information systems
and computer science is desirable, but not required. Other likely readers are software
development professionals who are looking for a methodical approach to learning
object-oriented software development using Java, especially those who only have ex-
perience in procedural programming.

Course Definition

This book is recommended for use in information systems or computer science courses
at the college level and targets students pursuing an interest in computer science, in-
formation systems, or software engineering. In addition to delivering solid program-
ming language instruction, it lays a broad foundation in object-oriented methodology,
based on best practices and proven principles developed by Grady Booch, Jim Rum-
baugh, Ivar Jacobson, Peter Coad, Barry Boehm, Kent Beck, and other recognized
software engineering thought leaders. Based on a complete, object-oriented life-cycle
view of the software design and development process, software engineering as defined
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and deseribed in thig book embraces the use of java for the development of robust,
commercially viable, and eminently usable software solutions. _

From initial concept to deployment, all aspects of software engineering project
design, development, and management will accompany the students’ learning experi-
ence. They will understand how rigorous iteration-based requirements management
(using stakeholder and use case analysis), conceptual and physical design (using the
Unified Modeling Language and Design Patterns), component-based implementation,
and well-planned deployment contribute to transitioning software development from
an art form to an engineering discipline.

For professors and instructors, this book and accompanying website constitute
solid teaching aids, providing not only Java language training, but also work process-
based instruction, including a clear and practical introduction to object-oriented design
and development. Written with the understanding that the introduction to software en-
gineering and Java can be a daunting experience for many inexperienced readers, this
book delivers its instructional content with a strong emphasis on illustrative examples
and a firm grounding in real-life applications.

Courses on Java and object-oriented programming are mainstay offerings on
many college campuses. This book seeks to support and deepen the interest of stu-
dents, teachers and administrators in an area of computer science critical to the devel-
opment of core skills sought after by the high-technology industry. Courses built to
leverage the contents of this book will help students advance their understanding of
object-oriented software engineering using Java to a level where they can either move
on to more advanced course work, or apply their new, practical knowledge in entry-
level work positions.

Another Java Book?

The idea for this book arose originally from my search (Merx) for appropriate text-
books for use in my own Java courses. It appeared that available textbooks either focus
on Java syntax and structure at the expense of methodology and process, or emphasize
“analysis and design,” while lacking the practical context of a modern object-oriented
programming language and toolset. Both of us have extensive experience both in acade-
mia (SDSU, UCSD, Mesa College, University of Phoenix, National University, Grossmont
College, and University of Maryland University College) and in business (Borland, To-
getherSoft, NCR,AT& T, QUALCOMM, ICL/Fujitsu, etc.). This background convinces us
that as educators we need to do better in training our students for the multi-disciplinary
effort required to develop valuable, high-quality software that solves difficult problems
in a world-class fashion.

While many excellent text and reference books on Java are available, most are
lacking key features deemed essential for practical instruction of effective software en-
gineering using Java. From our perspective, a key area of progress in software develop-
ment is the recasting of professional programming as a software engineering discipline,
with its implications of reusability, quality controlled rigor, focus on architecture and
process, and project management. Software engineering, as described and standard-
ized in the Carnegie-Mellon University Software Engineering Institute’s Capability
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Maturity Model, for example, promotes a life-cycle approach to software development
projects. The unique features of this book focus on programming language instruction
within the framework of a solid, comprehensive, object-oriented methodology, appro-
priate for implementation in real-world commercial software development projects by
inexperienced software engineers.

Both of us have extensive commercial hands-on programming, teaching, and
managerial experience in software design and development, architecture, tools, imple-
mentation, and project management. Our understanding of industry needs, combined
with our teaching experience, have led to this text, which integrates important instruc-
tional topics otherwise only available from multiple, unrelated textbooks.

GEORGES G. MERX AND RONALD J. NORMAN
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