Unified Software
Engineering

with gfwa,

Georges G. Merx
Ronald J. Norman

> ¥ o Vuc- I
~ - Georges G. Merx
3 ¥/ Yy EBRREFER
e ' 4 i “ i :(i} Bﬂﬂa'd J, NDrman %
‘ BEHESER

1R A A R

China Machine Press

Merx

EEREFER
- Ronald J. Norman
EFHESFR

G—REFI1E

(ZR3hR)

e ety (v ph ke g

}w o L P T

English reprint edition copyright © 2008 by Pearson Education Asia Limited and China
Machine Press. '

Original English language title: Unified Software Engineering with Java (ISBN 0-13-
047376-6) by Georges G. Merx and Ronald J. Norman, Copyright © 2007.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A5 3 BLEN AR HiPearson Education Asia Ltd fAUHLER Tk HAR MR HR. KBHIR
HPEFA, AEUEATREHRPEETEAE.

RFHREARKMESN (FREFEEE, BITRNTEREATEEEHE) #HE
EiT.
A5 TG H Pearson Education (BIAEHEHRER) LR nE, THEELHHE.

IRALRR, BRBR,
FHZ@EWE R TRARTESR

AHFEIZE. BF: 01-2007-4208
EHERSBE (CIP) ¥iE

Gi—84 LR (ECR)/(E) B8 (Merx, G. G.) 2. —t3{: YR IkHARE, 2008.1

(BHFERRAE)
4R X : Unified Software Engineering with Java

ISBN 978-7-111-23164-6
1.4 0.8 ILHREFR-FX V.TP311.52
fE R A B B ECIPE RS (2007) %2056975

FLAR Tk AR (ERiPisRE 57 k229 RBCAHES 100037)
HEmE: BikE

JEEEREENRIA PR A B AR - B R RITHRAT
200841 A 38 1 kR 58 12k EN Rl

170mm x 242mm - 39.5E[I3k

P52, ISBN 978-7-111-23164-6

EHr: 69.005¢

AWFH, whHEN. BT, 65, mFEkrTifiE
AWM. (010) 68326294

BhRE B8NS

XEEFUKE, BRRKHBHZBMMESHERNERIE, EATERXEER
FHER S GUSERE T 2RI E, WIERXHENES, FEXEEGERERRREN
ATEZERLRKEN, BHEGIRNE, EELtHEES, KEN=LFE5HETRERE
B L, HEIFRHRIF 2RI FM 5 AR S EN &L, Btk
HH5 BRHE N, TOUERITHIRMTER, TRETERMES, EEELANE,
XHAEZENME, ANMEHASEE AR TRE.

4, E2RERAAREDT, REMUEN™LRBRE, XE kAT
Tk AZEEY., XHTEIEEFMURFEEREIE, BER: mELEMIE
REHERE LEEHXERE, CREGEEARBRAKE, MkAREDLHIR
T, XESRXSEREXTBEIR2E RO T ERBRRENZSREH A TS ERE
£24b, Bk, sIHE—#EIMEF HEIEMHBHBREHENEETF LR RERR
FHEER, hRSHFEN. BREENHF —RARENLHZE.

PR T R EEEXERARAFAKRETEIRE “HREAHFTRS . B
19984 FF8f, HEFAFIMK LIEE)URFE T8k, BIFEIMEFHM L. 2 JLER
A% S, F+l15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann
FHRAELHRATBRILTRFNAIERR, NEMNILANEEFEAM P EEH
Tanenbaum, Stroustrup, Kernighan, Jim GrayZ KIfi & xHI—#tL28EHS, LI “HE
PLEHEAS" AHBREAR, #ikES%S]. MREER. KEALENHE, LEAR
TXEMNBH R FHE R, _

“UEIFENE” HHRTIEGS TEANMEERNR IR, BANERANX
RETHENEERES, CAFGFHBETHENEERNIE, EPHESBLHE
LREREMEFENEZE, FREEBRAXPHRERIERF, €4, “HEHLBE
A" BE2HR TIEL2604 @ f, XEPFEREFRILTRIFVOR, HEFEE
BRRAADEXRBEM MBS EBE, A—PH 5ERRITT T REHEM.

B EFF RN S EMBEHMBENREEHERL, &FFIEIMNTBEILEHNE
KA RAEE A—AFHIBT . Ak, EEATMASIHEEMAIDE, B “HEN
MR 25, XRENRIEA, MREMFRY “@HBFRBE". ATRIEXHE
ENBHPURYE, FRAT B ZRIMEIRNIRS, EEAFRIETHEBE
Be. dbxk%. HEk%E, BRI RS, EEKR%¥, FBERBKRSE, ERKE. W
ILR%, PEBEARZ. RMRELLKY, AXREKRY. PEARKE. LHEZE

iv

MRAZE, dbmif X%, PIUKE, BREELKRFE. AMKE, #ALTHEBE. F
] [5015 B 22 & MIFIAE .0 % B N B AR AR E BN &4 S E 4
SEAK “FREIFFTHSR™, ARMBEEEE LMHREE,

XN PR R B E TR A E MR EAM IS B, AE N SRR
X VHEFESITEN., EPiFLEBHHEHAM. 1. T., Stanford, U.C. Berkeley,
C.M. U. St FE2MA%HERH. MURETRFEIT. RELEH. BERL. HE
PLEREW ., HEE. RiFREE. KELR. BEZ. EE5W%E. EEREFFEN
REUENF L EEFZOZORE, MAERRE—FNHAETRITEZF,
FHHEZ=1THEmAE. FHCHL2HFNILEHRERRM. 75X R RE Er A 0h
KIEMIEEIZT, RELBEHENBZ2NERTHBEEMAZE,

BEHITEE . 2ROEH . —RIVEE, MHEOER, BANRE, XSEFFE
BMNBEBETREMRIE, ERIMOERERERE, MRM/OBRLERRITAE
X—& R BRI EERE) ., BEMWHRRRRMNMEERSVER, LEAFTRLE
IMFRE M BT TR HBISRE THEE, BINBBKRGENT:

B, FHhpf4:: hzjsj@hzbook.com
BRZE®IE: (010) 68995264

BRI AERHEREE G ERlS
HPEL4RAL . 100037

ERETERS

(it R EEIRF)
W LEE XM XLEMK
=3 EF Xk XNR

FHE FRR FREY HAF
I AR 4R &R e AL
LR €3 Vg EmWE OE W
7eff R HEHR BEE EZEL

AN L s

My wife Jin always supports and encourages my projects—even
one as major as writing this book—although they take away from
our time together. I am deeply grateful for this irrefutable evidence
of true love.

I hope that my efforts will serve to provide some inspiration
for my daughter London to find her own path to success, wherever
that path may lead her.

A good portion of this work was completed at the Fenton
Place Starbucks in San Diego. I express my gratitude to the staff
there, and to Starbucks as one of the great American companies, for
creating an environment where those of us with short attention
spans can be productive.

All the people at Prentice Hall—especially our editor, Tracy
Dunkelberger, and her indefatiguable assistant, Christianna Lee—
with whom [have had the privilege to work are immensely support-
ive, helpful, and competent: my appreciation is heartfelt. A special
note of appreciation to Irwin Zucker, our production editor, for
getting us through the production phase of this project with patience
and much good will.

Finally, the indefatigable encouragement and contributions of
my co-author, Ron, have been indispensable ingredients to making
this project workable.

Georges G. Merx

There are so many to dedicate this book to that I cannot name them
individually. Literally hundreds of software engineers (generic title)
and academics/researchers around the globe have contributed to
making me the professional I am today through the many
publications, conferences, seminars, and workshops that I have
either physically or virtually attended or led. Their influence has
been profound in my life, and I am deeply grateful for the
experiences and interaction with each of these professional women
and men.

I also dedicate this book to those who will advance their acad-
emic and/or professional knowledge through the use of this book. It
is truly a privilege to contribute something back to you, since so
many individuals have profoundly influenced me.

Thank you, Georges, for allowing me to take this book journey
with you—you are a gifted writer and seasoned professional/academic.

Finally, thank you to my life-partner, wife, and best friend:
Caralie.

Ronald J. Norman

Preface

Creating commercial software requires excellent knowledge and skills in a number of
areas, not just programming language syntax and semantics. We have therefore written a
book that teaches the fundamentals of Java programming in the context of object-orient-
ed software engineering and a Unified-Process-based software development methodolo-
gy. Today’s programmers need to be software engineers who knw their languages and
tools, certainly, but who also understand object-oriented analysis and design, software
quality asurance, and software project management. In fact, the best antidote to the
outsourcing of software development jobs overseas is to elevate the profession above the
specialist tasks of code development. Software engineers need to have the skills to deliv-
er quality software on time, on budget, and according to stakeholder requirements. Qur
book puts the study of Java in this meaningful, valuable context.

Audience

College students with a previous course in programming or software engineering
learning their first or second computer programming language are the primary audi-
ence for this textbook. Some previous exposure to principles of information systems
and computer science is desirable, but not required. Other likely readers are software
development professionals who are looking for a methodical approach to learning
object-oriented software development using Java, especially those who only have ex-
perience in procedural programming.

Course Definition

This book is recommended for use in information systems or computer science courses
at the college level and targets students pursuing an interest in computer science, in-
formation systems, or software engineering. In addition to delivering solid program-
ming language instruction, it lays a broad foundation in object-oriented methodology,
based on best practices and proven principles developed by Grady Booch, Jim Rum-
baugh, Ivar Jacobson, Peter Coad, Barry Boehm, Kent Beck, and other recognized
software engineering thought leaders. Based on a complete, object-oriented life-cycle
view of the software design and development process, software engineering as defined

viii

and deseribed in thig book embraces the use of java for the development of robust,
commercially viable, and eminently usable software solutions. _

From initial concept to deployment, all aspects of software engineering project
design, development, and management will accompany the students’ learning experi-
ence. They will understand how rigorous iteration-based requirements management
(using stakeholder and use case analysis), conceptual and physical design (using the
Unified Modeling Language and Design Patterns), component-based implementation,
and well-planned deployment contribute to transitioning software development from
an art form to an engineering discipline.

For professors and instructors, this book and accompanying website constitute
solid teaching aids, providing not only Java language training, but also work process-
based instruction, including a clear and practical introduction to object-oriented design
and development. Written with the understanding that the introduction to software en-
gineering and Java can be a daunting experience for many inexperienced readers, this
book delivers its instructional content with a strong emphasis on illustrative examples
and a firm grounding in real-life applications.

Courses on Java and object-oriented programming are mainstay offerings on
many college campuses. This book seeks to support and deepen the interest of stu-
dents, teachers and administrators in an area of computer science critical to the devel-
opment of core skills sought after by the high-technology industry. Courses built to
leverage the contents of this book will help students advance their understanding of
object-oriented software engineering using Java to a level where they can either move
on to more advanced course work, or apply their new, practical knowledge in entry-
level work positions.

Another Java Book?

The idea for this book arose originally from my search (Merx) for appropriate text-
books for use in my own Java courses. It appeared that available textbooks either focus
on Java syntax and structure at the expense of methodology and process, or emphasize
“analysis and design,” while lacking the practical context of a modern object-oriented
programming language and toolset. Both of us have extensive experience both in acade-
mia (SDSU, UCSD, Mesa College, University of Phoenix, National University, Grossmont
College, and University of Maryland University College) and in business (Borland, To-
getherSoft, NCR,AT& T, QUALCOMM, ICL/Fujitsu, etc.). This background convinces us
that as educators we need to do better in training our students for the multi-disciplinary
effort required to develop valuable, high-quality software that solves difficult problems
in a world-class fashion.

While many excellent text and reference books on Java are available, most are
lacking key features deemed essential for practical instruction of effective software en-
gineering using Java. From our perspective, a key area of progress in software develop-
ment is the recasting of professional programming as a software engineering discipline,
with its implications of reusability, quality controlled rigor, focus on architecture and
process, and project management. Software engineering, as described and standard-
ized in the Carnegie-Mellon University Software Engineering Institute’s Capability

ix

Maturity Model, for example, promotes a life-cycle approach to software development
projects. The unique features of this book focus on programming language instruction
within the framework of a solid, comprehensive, object-oriented methodology, appro-
priate for implementation in real-world commercial software development projects by
inexperienced software engineers.

Both of us have extensive commercial hands-on programming, teaching, and
managerial experience in software design and development, architecture, tools, imple-
mentation, and project management. Our understanding of industry needs, combined
with our teaching experience, have led to this text, which integrates important instruc-
tional topics otherwise only available from multiple, unrelated textbooks.

GEORGES G. MERX AND RONALD J. NORMAN

W ¥OpBI2S] | § NOUBIIN] | p WODISY] | € MOPIBISE] N%&i-ﬁ%aﬁ
= NVId ONLLINE VA TVIINHOZL

< NOLLVINANNDOQ
< LINTFWIDVNVHN NOLLVENOLEINOD
<« NOLLVATTYA ANV SNOLLD3JSNI
- INFWADVNVI LD3r0¥d
sautdwsiq Sunuoddng
8”:&23”_..”....2 FONVNIALNIVA
pue aepdny ANV LdOddNS
SULIOg
9]
i 29p10
: 38uey)
UOHEIUBLINIO,
u>=-.:n==.=vm— ueld
,v:- .mowD amiojdaq
suoday suoday
uonEIYIIAD 83L
vO PIoLd
woday uoneoyadg
1831 9L
uonesdajuy uoneidajuj
uoday suodoy uonesyadg
ISAL uonoadsuy UOHE}
N : -uawaduy
ugjd wowafeueyy
ueld uonem3guo) uonesyadg uoneoywads NOISIA
uogejusWINI0g ‘Uonesyads 1831w udisaq
Joueinssy Alend t
n
SULIO]
uejg uoneaypads | &
._M_M_M“-_voohwn“m 1osfoig sjuawaiinbay m SISATVNV
- NS T | IS—— pp—— R S =}
= LdIONOD
o «d
ugjg ssauisng [§ saundosi
SPBJIIY HOREJUIWNIOC] _ umopmy | g uoppaayy | p woppiay | ¢ wopvaasy | T wopmaas |1 !QEE!L»:Q:EE

auyy

[OPOJA SS2901d Pa1JIu[) PoOpUaIXy

Contents

Preface

1 Introduction to Java in the Context of Software Engineering

1.1
1.2

1.3

1.4
1.5

1.6

1.7

1.8

Getting Acquainted 1

What Is Java Programming? 1

121 What is Software Engineering? 2
Learning Objectives 6

1.3.1 Learning Layout 7

132 Learning Connections 8

Executive Summary 9

Learning Modules 10

15.1 Concepts 10

1.5.2 Unified Process-Based Methodology Overview
153 Position in Process 14

1.5.4 Domain Model 17

155 Scenarios 17

1.5.6 The Unified Modeling Language 21
The Java Programming Language 67

1.6.1 Historical Perspective on Java 21
1.6.2 Java Basics 23

Relationships 28

1.71 Caveats and Complexities 30
Example: The Voting Program 30

1.8.1 Project (System) Vision 31

1.82 Project Description 31

1.83 Stakeholder Analysis 32

1.84 Customer Profile 32

1.8.5 Market Analysis 32

1.8.6 Risk Analysis 33

1.8.7 Business Use Case Model and Use Cases 33
1.8.8 Competitive Analysis 36

1.89 Distribution Plan 41

12

1.9

1.10
1.11
1.12
1.13
1.14
1.15

1.16

1.8.10 Financial Plan 42

1.8.11 High-Level Project Plan 43

1.8.12 Recommendations 43

Ongoing Case Study 43

191 Introduction 43

1192 Initial Concept 44

1.9.3 Business Justification 45

1.9.4 Stakeholder Analysis 46

1.9.5 Case Assignments 46

Resources: Connections ® People ® Companies 46
Summary and Recommendations 47

Review Questions 47

Glossary — Terminology — Concepts 48
Exercises 50

Setting up a Java Development Environment 50
1.151 Versions of Java 51

1.152 Class and Classpath Setup 51

Java Programming Exercises 51

2 Experimenting with Classes and Objects

21

22
2.3

24
2.5
2.6
2.7
2.8

2.9
2.10

211
212
2.13

Learning Objectives 54

211 Learning Layout 55

212 Learning Connections 56

Executive Summary 57

Learning Modules 58

231 Concepts 58

232 Position in Process 73

The Purpose of Object Orientation in Software Engineering
Problems with Procedural Programming 75

How O-O Solves Software Development Problems 76
Understanding Object Orientation 77
Object-Orientation in Java 79

2.81 Java Classes and Objects 79

Architecture and Class Hierarchy 82

Economies of Reuse 82

2101 Quality 83

2.10.2 Consistency 83

2.10.3 Implement Once 83

2.104 Flexibility 83

Use Case Models and Classes 84

“Real-Life” Variations 85

Translating Generic Class Descriptions into Java Classes 85

74

52

2.14 Unified Modeling Language Perspective 86
2.15 A Simple Java Program: The Voting Program Prototype 86
2.16 Relationships 87
2.16.1 Caveats and Complexities 87
2.17 Example: The Voting Program 88
2171 The Domain Model 88
2172 Requirements Specification Outline 89
2173 Deliverables 103
2.17.4 Other Requirements 103
2.18 Ongoing Case Study 104
2.18.1 Market Analysis 104
2.182 Risk Management 104
2.18.3 Business Use Case Model and Business Use Cases 105
2.18.4 Competitive Analysis 105
2.18.5 Distribution Plan (Pricing, Packaging, Promotion, Positioning)
105
2.18.6 Financial Plan (Revenue Plan, Budget, Cash Flow Analysis,
ROI Analysis) 106
2.18.7 High-Level Project Plan 106
2.18.8 Recommendations 106
2.189 Case Assignments 106
2.19 Resources: Connections ® People ® Companies 107
220 Summary and Recommendations 107
221 Review Questions 107
2.22 Glossary — Terminology — Concepts 108
223 Exercises 108
3 The Structure and Syntax of Java 109
3.1 Learning Objectives 111
3.1.1 Learning Layout 111
312 Learning Connections 111
3.2 Executive Summary 112
3.3 Learning a Programming Language 114
331 For the Novice 114
332 For the Experienced Software Engineer 119
333 Similarities to Other O-O Programming Languages 120
34 Learning Modules 122
341 Concepts 122
3.5 The Java Family of Classes and Packages 143
3.6 Third-Party Components 144
3.7 Software Quality Assurance 144

3.8 Positionin Process 146
3.8.1 Design Model 147
3.8.2 Component Design 147
383 Class Hierarchy 147
3.84 System Architecture 148
3.8.5 Prototyping 150
3.9 Relationships 150
39.1 Caveats and Complexities 152
3.10 Example: The Voting Program 152
3.10.1 Component Design 152
3.10.2 Class Hierarchy 153
3.10.3 System Architecture 153
3.104 Prototype 153
3.10.5 Design Specification, Quality Assurance Specification, and
Configuration Management Plan 153
3.11 Ongoing Case Study 155
3.12 Resources: Connections ® People © Companies 158
3.13 Summary and Recommendations 158
3.14 Review Questions 159
3.15 Glossary — Terminology — Concepts 159
3.16 Exercises 159
3.17 Optional Chapter Addendum: LibraryManager, an Application
Example 160
3.17.1 Program Code 161
3172 Analysis 179

4 Design and Development of Java Applications 183

41 Learning Objectives 185
41.1 Software Engineering Methodology 186
412 Java Syntax and Structure 187
413 Object Orientation 190
414 Software Quality Assurance 191
4.1.5 Attitude and Motivation 192
4.1.6 Learning Layout 193
4.1.7 Learning Connections 193

42 Executive Summary 193

43 Learning Modules 196
43.1 Software Engineering History 196
43.2 Process Models 205
433 “Object Thinking” 209
434 Object Orientation 210
4.3.5 Java Control Structures 214

44

4.5

4.6
4.7
4.8
49
4.10
4.11
412

Position in Process 227

44.1 Design Specification 227

442 Unit Test Specification 229

443 Quality Assurance Plan 229

444 Configuration Management Plan 230
445 Documentation Plan 230

Example: The Voting Program 231

45.1 Introduction 231

452 Functional Overview 234

453 System Architecture 235

454 Class Hierarchy 236

45.5 Component Definition and Design 238
4.5.6 Prototype Description and Evaluation 238
4.5.7 Environment 239

4.5.8 Supporting Disciplines 240

Ongoing Case Study 245

Resources: Connections ® People ® Companies 246
Summary and Recommendations 247 -

Review Questions 247

Glossary — Terminology — Concepts 247

Exercises 248

Optional Chapter Addendum: Pattern-Driven Design 248
4.12.1 Pattern Principle 1: High Cohesion 248
4.12.2 Pattern Principle 2: Low Coupling 249
4123 Most Popular Patterns 249

5 Architecture-Driven Component Development

51

52
53

Learning Objectives 251

5.1.1 Revisiting System and Software Architecture 252
512 Java Component Interaction and Integration 255
513 Learning Layout 260

514 Learning Connections 260

Executive Summary 260

Learning Modules 262

531 Concepts 263

5.3.2 Architectural Perspectives 264

533 Developing Java Components 269

5.34 Java Class Interaction 276

5.3.5 Java Objects 278

5.3.6 Methods and Constructors 278

5.3.7 Polymorphism: Method Overloading 279

251

Xv

Xvi

5.4

3.5

5.6

5.7

5.8
5.9

53.8 Polymorphism: Method Overriding 280
539 Inheritance: Extending Classes 280
5.3.10 Inheritance: Implementing Interfaces 280
5311 User Interface: An Introduction 281
5.3.12 User Input and User Input Validation 282
Position in Process 283

541 Component Implementation 284

542 Unit Testing 284

543 Build Management 285

Example: The Voting Program 287

5.51 Components 288

Ongoing Case Study 310

5.6.1 Some Notes on the Model Home Interior Design Business

311
Resources: Connections ® People ® Companies 312
Summary and Recommendations 312
Review Questions 312

5.10 Glossary — Terminology — Concepts 313
5.11 Exercises 313

6 Introduction to Distributed Computing Concepts

6.1

6.2

6.3

6.4

6.5

Learning Objectives 315

6.1.1 Creating Value 315

6.1.2 Agile Techniques 318

6.13 Learning Layout 319

6.1.4 Learning Connections 319

Executive Summary 320

Learning Modules 322

6.3.1 Concepts 322

6.3.2 Agile Methods and Rapid Application Development
6.3.3 Distributed Java Applications 325

6.3.4 Methodology, Tools, and Distributed Solutions 327
6.3.5 Information Persistence 331

Position in Process 333

6.4.1 Class and Object Integration 333

6.4.2 Package Integration 334

6.4.3 Subsystem Integration 335

6.4.4 System Integration 335

6.4.5 Integration Testing 335

Iterative Improvements 337

314

324

