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Preface

Aut lego vel scribo; doceo scrutorve sophian.

—Sedulius Scottus

With the advent of version 2 of the iPhone system, Apple proved they could do a re-
markable thing — adapt their existing Cocoa computer application programming
framework to make applications for a touch-based device with limited memory and
speed and a dauntingly tiny display. The resulting Cocoa Touch framework, in fact,
turned out to be in many ways better than the original Cocoa.

A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
are really clever!” On the one hand, the number of built-in interface widgets was se-
verely and deliberately limited; on the other hand, the power and flexibility of some of
those widgets, especially such things as UITableView, was greatly enhanced over their
Mac OS X counterparts. Even more important, Apple created a particularly brilliant
way (UIViewController) to help the programmer make entire blocks of interface come
and go and supplant one another in a controlled, hierarchical manner, thus allowing
that tiny iPhone display to unfold virtually into multiple interface worlds within a single
app without the user becoming lost or confused.

Even more impressive, Apple took the opportunity to recreate and rationalize Cocoa
from the ground up as Cocoa Touch. Cocoa itself is very old, having begun life as
NeXTStep before Mac OS X even existed. It has grown by accretion and with a certain
conservatism in order to maintain something like backward compatibility. With Cocoa
Touch, on the other hand, Apple had the opportunity to throw out the baby with the
bath water, and they seized this opportunity with both hands.

So, although Cocoa Touch is conceptually based on Mac OS X Cocoa, it is very clearly
not Mac OS X Cocoa, nor is it limited or defined by Mac OS X Cocoa. It’s an inde-
pendent creature, a leaner, meaner, smarter Cocoa. I could praise Cocoa Touch’s de-
liberate use of systematization (and its healthy respect for Occam’s Razor) through
numerous examples. Where Mac OS X’s animation layers are glommed onto views as
a kind of afterthought, a Cocoa Touch view always has an animation layer counterpart.
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Memory management policies, such as how top-level objects are managed when a nib
loads, are simplified and clarified. And so on.

At the same time, Cocoa Touch is still a form of Cocoa. It still requires a knowledge of
Objective-C. Itis not a scripting language; it is certainly not aimed at nonprogrammers,
like HyperCard’s HyperTalk or Apple’s AppleScript. It is still huge and complicated.
In fact, it’s rather difficult.

Meanwhile, Cocoa Touch itself evolves and changes. The iPhone System 2 matured
into the iPhone System 3. Then there was a sudden sally in a new direction when the
iPad introduced a larger screen and iPhone System 3.2. The iPhone 4 and its double-
resolution Retina display also ran on a major system increment, now dubbed iOS 4.
Every one of these changes has brought new complexities for the programmer to deal
with. To give just one simple example, users rightly complained that switching between
apps on the iPhone meant quitting one app and launching another. So Apple gave the
iPhone 4 the power of multitasking; the user can switch away from an app and then
return to it later to find it still running and in the state it was left previously. All well
and good, but now programmers must scurry to make their apps compatible with mul-
titasking, which is not at all trivial.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about Mac OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their em-
phasis shifted from Mac OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
i0S gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. T often see questions online from programmers who
are evidently deep into the creation of some interesting app, but who are stymied in a
way that reveals quite clearly that they are unfamiliar with the basics of the very world
in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of i10S. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Indeed, my working title was “Fundamentals of Cocoa Touch Programming.”
Here I have attempted to marshal and expound, in what  hope is a pedagogically helpful
and instructive yet ruthlessly Euclidean and logical order, the principles on which
sound iOS programming rests, including a good basic knowledge of Objective-C (start-
ing with C itself) and the nature of object-oriented programming, advice on the use of
the tools, the full story on how Cocoa objects are instantiated, referred to, put in com-
munication with one another, and managed over their lifetimes, and a survey of the
primary interface widgets and other common tasks. My hope, as with my previous
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books, is that you will both read this book cover to cover (learning something new often
enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find
that they don’t fulfill the same function as a reasoned, ordered presentation of the facts.
The online documentation must make assumptions as to how much you already know;
it can’t guarantee that you'll approach it in a given order. And online documentation
is more suitable to reference than to instruction. A fully written example, no matter
how well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know Cbefore you know Objective-C for the simple reason that Chapter 1 precedes
Chapter 2. And along with facts, I also bring to the table a degree of experience, which
I try to communicate to you. Throughout this book you’ll see me referring to “common
beginner mistakes”; in most cases, these are mistakes that [ have made myself, in ad-
dition to seeing others make them. I try to tell you what the pitfalls are because I assume
that, in the course of things, you will otherwise fall into them just as naturally as I did
as I was learning. You'll also see me construct many examples piece by piece or extract
and explain just one tiny portion of a larger app. It is not a massive finished program
that teaches programming, but an exposition of the thought process that developed
that program. It is this thought process, more than anything else, that I hope you will
gain from reading this book.

iOS is huge, massive, immense. It’s far too big to be encompassed in a book even of
this size. And in any case, that would be inappropriate and unnecessary. There are
entire areas of Cocoa Touch that I have ruthlessly avoided discussing. Some of them
would require an entire book of their own. Others you can pick up well enough, when
the time comes, from the documentation. This book is only a beginning — the funda-
mentals. But I hope that it will be the firm foundation that will make it easier for you
to tackle whatever lies beyond, in your own fun and rewarding iOS programming fu-
ture.

In closing, some version numbers, so that you know what assumptions I am making.
At the time I started writing this book, system versions 3.1.3 (on the iPhone) and 3.2
(on the iPad) were most recent. As [ was working on the book, iOS 4 and the iPhone 4
came into being, but it didn’t yet run on the iPad. Subsequently iOS 4.2 emerged: the
first system able to run on both the iPhone and the iPad. At the same time, Xcode was
improved up to 3.2.5.

Then, just in time for my final revisions, Xcode 3.2.6 and iOS 4.3 were released, along
with the first public version of the long-awaited Xcode 4. Xcode 4 is a thorough overhaul
of the IDE: menus, windows, and preferences are quite different from Xcode 3.2.x. At
the same time, both Xcode 4 and Xcode 3.2.x can coexist on the same machine and
can be used to work on the same project; moreover, Xcode 3.2.x has some specialized
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capabilities that Xcode 4 lacks, so some long-standing developers may well continue
to use it. This situation presents a dilemma for an author describing the development
process. However, for iOS programming, I recommend adoption of Xcode 4, and this
book assumes that you have adopted it.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.
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We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming iOS 4 by Matt Neuburg
(O’Reilly). Copyright 2011 Matt Neuburg, 978-1-449-38843-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safariﬂ) Safari Books Online is an on-demand digital library that lets you easily

saoee search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920010258/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
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Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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