i0S 44512 (ZEHR)
iPhone, iPad#liPod Touch¥f & &Y

O’REILLY"

¥ &+ % HERi Matt Neuburg &

i0S 4%% %2 e

Programming iOS 4

Matt Neuburg

O’REILLY"

Beijing - Cambridge « Farnham - Koln « Sebastopol - Tokyo
O’Reilly Media, Inc. 3 A& d K & i JiAL i ik

FRERF HhRAt

EBERSE (CIP) #iE
i0S 4 g . #3/ (£) #EH A (Neuburg, M.)

= —HA . —FER: AmEAk¥Hiit, 201110
ISBN 978-7-5641-2941-5

L@i IL O UL OB3h8iEIL— AR -
B — 33 V. @ TN929.53

T E R A B A5 1R CIP ¥ (2011) %6 1739155

{LHERRPUREVER A R ID
B, 10-2010-416 =

©2011 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2011. Authorized reprint of the original English edition, 2011 O’Reilly Media, Inc., the owner of all rights

to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

¥ LR sk & O’Reilly Media, Inc. % #2 2011,

FLHEPRE A kS RRAR R 2011, R B RR 69 o MR Ao 4K AR AT B o RRAUFe 4 B AL E9 FT R & —— O’Reilly

Media, Inc. #53% 7T ,

WRAFRAT, AR @FT, AP EEITIH 5 H0 28 RFUETH X EH

i0S 4 gafs

MR & AT : R KFEHAR (L

b Hb: BERPORREE2 % . 210096
HORR A {TE

] Hik: http://www.seupress.com

B, F-#B{ . press@seupress.com

En Ril: e EDRIA P25 o

A, 78T ZH x 960 =k 16 T A
. 52.25

. 1023 F

. 20114810 A% 1R

K 2011410 HE 1 kENRI

‘5. ISBN 978-7-5641-2941-5

#r: 98.00 ¢ ()

g2 F 43 H

At A5 A EI s R AR, I SRR S B R BIE (FFF):

025-83792328

Preface

Aut lego vel scribo; doceo scrutorve sophian.

—Sedulius Scottus

With the advent of version 2 of the iPhone system, Apple proved they could do a re-
markable thing — adapt their existing Cocoa computer application programming
framework to make applications for a touch-based device with limited memory and
speed and a dauntingly tiny display. The resulting Cocoa Touch framework, in fact,
turned out to be in many ways better than the original Cocoa.

A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
are really clever!” On the one hand, the number of built-in interface widgets was se-
verely and deliberately limited; on the other hand, the power and flexibility of some of
those widgets, especially such things as UITableView, was greatly enhanced over their
Mac OS X counterparts. Even more important, Apple created a particularly brilliant
way (UIViewController) to help the programmer make entire blocks of interface come
and go and supplant one another in a controlled, hierarchical manner, thus allowing
that tiny iPhone display to unfold virtually into multiple interface worlds within a single
app without the user becoming lost or confused.

Even more impressive, Apple took the opportunity to recreate and rationalize Cocoa
from the ground up as Cocoa Touch. Cocoa itself is very old, having begun life as
NeXTStep before Mac OS X even existed. It has grown by accretion and with a certain
conservatism in order to maintain something like backward compatibility. With Cocoa
Touch, on the other hand, Apple had the opportunity to throw out the baby with the
bath water, and they seized this opportunity with both hands.

So, although Cocoa Touch is conceptually based on Mac OS X Cocoa, it is very clearly
not Mac OS X Cocoa, nor is it limited or defined by Mac OS X Cocoa. It’s an inde-
pendent creature, a leaner, meaner, smarter Cocoa. I could praise Cocoa Touch’s de-
liberate use of systematization (and its healthy respect for Occam’s Razor) through
numerous examples. Where Mac OS X’s animation layers are glommed onto views as
a kind of afterthought, a Cocoa Touch view always has an animation layer counterpart.

Xvii

Memory management policies, such as how top-level objects are managed when a nib
loads, are simplified and clarified. And so on.

At the same time, Cocoa Touch is still a form of Cocoa. It still requires a knowledge of
Objective-C. Itis not a scripting language; it is certainly not aimed at nonprogrammers,
like HyperCard’s HyperTalk or Apple’s AppleScript. It is still huge and complicated.
In fact, it’s rather difficult.

Meanwhile, Cocoa Touch itself evolves and changes. The iPhone System 2 matured
into the iPhone System 3. Then there was a sudden sally in a new direction when the
iPad introduced a larger screen and iPhone System 3.2. The iPhone 4 and its double-
resolution Retina display also ran on a major system increment, now dubbed iOS 4.
Every one of these changes has brought new complexities for the programmer to deal
with. To give just one simple example, users rightly complained that switching between
apps on the iPhone meant quitting one app and launching another. So Apple gave the
iPhone 4 the power of multitasking; the user can switch away from an app and then
return to it later to find it still running and in the state it was left previously. All well
and good, but now programmers must scurry to make their apps compatible with mul-
titasking, which is not at all trivial.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about Mac OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their em-
phasis shifted from Mac OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
i0S gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. T often see questions online from programmers who
are evidently deep into the creation of some interesting app, but who are stymied in a
way that reveals quite clearly that they are unfamiliar with the basics of the very world
in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of i10S. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Indeed, my working title was “Fundamentals of Cocoa Touch Programming.”
Here I have attempted to marshal and expound, in what hope is a pedagogically helpful
and instructive yet ruthlessly Euclidean and logical order, the principles on which
sound iOS programming rests, including a good basic knowledge of Objective-C (start-
ing with C itself) and the nature of object-oriented programming, advice on the use of
the tools, the full story on how Cocoa objects are instantiated, referred to, put in com-
munication with one another, and managed over their lifetimes, and a survey of the
primary interface widgets and other common tasks. My hope, as with my previous

xviii | Preface

books, is that you will both read this book cover to cover (learning something new often
enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find
that they don’t fulfill the same function as a reasoned, ordered presentation of the facts.
The online documentation must make assumptions as to how much you already know;
it can’t guarantee that you'll approach it in a given order. And online documentation
is more suitable to reference than to instruction. A fully written example, no matter
how well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know Cbefore you know Objective-C for the simple reason that Chapter 1 precedes
Chapter 2. And along with facts, I also bring to the table a degree of experience, which
I try to communicate to you. Throughout this book you’ll see me referring to “common
beginner mistakes”; in most cases, these are mistakes that [have made myself, in ad-
dition to seeing others make them. I try to tell you what the pitfalls are because I assume
that, in the course of things, you will otherwise fall into them just as naturally as I did
as I was learning. You'll also see me construct many examples piece by piece or extract
and explain just one tiny portion of a larger app. It is not a massive finished program
that teaches programming, but an exposition of the thought process that developed
that program. It is this thought process, more than anything else, that I hope you will
gain from reading this book.

iOS is huge, massive, immense. It’s far too big to be encompassed in a book even of
this size. And in any case, that would be inappropriate and unnecessary. There are
entire areas of Cocoa Touch that I have ruthlessly avoided discussing. Some of them
would require an entire book of their own. Others you can pick up well enough, when
the time comes, from the documentation. This book is only a beginning — the funda-
mentals. But I hope that it will be the firm foundation that will make it easier for you
to tackle whatever lies beyond, in your own fun and rewarding iOS programming fu-
ture.

In closing, some version numbers, so that you know what assumptions I am making.
At the time I started writing this book, system versions 3.1.3 (on the iPhone) and 3.2
(on the iPad) were most recent. As [was working on the book, iOS 4 and the iPhone 4
came into being, but it didn’t yet run on the iPad. Subsequently iOS 4.2 emerged: the
first system able to run on both the iPhone and the iPad. At the same time, Xcode was
improved up to 3.2.5.

Then, just in time for my final revisions, Xcode 3.2.6 and iOS 4.3 were released, along
with the first public version of the long-awaited Xcode 4. Xcode 4 is a thorough overhaul
of the IDE: menus, windows, and preferences are quite different from Xcode 3.2.x. At
the same time, both Xcode 4 and Xcode 3.2.x can coexist on the same machine and
can be used to work on the same project; moreover, Xcode 3.2.x has some specialized

Preface | xix

capabilities that Xcode 4 lacks, so some long-standing developers may well continue
to use it. This situation presents a dilemma for an author describing the development
process. However, for iOS programming, I recommend adoption of Xcode 4, and this
book assumes that you have adopted it.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

xx | Preface

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming iOS 4 by Matt Neuburg
(O’Reilly). Copyright 2011 Matt Neuburg, 978-1-449-38843-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safariﬂ) Safari Books Online is an on-demand digital library that lets you easily

saoee search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920010258/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xxi

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

[t’s a poor craftsman who blames his tools. No blame attaches to the really great tools
by which I have been assisted in the writing of this book. I am particularly grateful to
the Unicomp Model M keyboard (http://pckeyboard.com), without which I could not
have produced so large a book so painlessly. I was also aided by wonderful software,
including TextMate (http://macromates.com) and AsciiDoc (http://www.methods.co.nz/
asciidoc). BBEdit (http://www.barebones.com) helped with its diff display. Screenshots
were created with Snapz Pro X (http://www.ambrosiasw.com) and GraphicConverter
(http:/fwww.lemkesoft.com); diagrams were drawn-with OmniGraffle (http://www.om
nigroup.com).

The splendid O’Reilly production process converted my AsciiDoc text files into PDF
while I worked, allowing me to proofread in simulated book format. Were it not for
this, and the Early Release program that permitted me to provide my readers with
periodic updates of the book as it grew, I would never have agreed to undertake this
project in the first place. I would like particularly to thank Tools maven Abby Fox for
her constant assistance.

[have taken advice from two tech reviewers, Dave Smith and David Rowland, and have
been assisted materially and spiritually by many readers who submitted errata and
encouragement. I was particularly fortunate in having Brian Jepson as editor; he pro-
vided enthusiasm for the O’Reilly tools and the electronic book formats, a watchful
eye, and a trusting attitude; he also endured the role of communications pipeline when
I needed to prod various parts of the O’Reilly machine. I have never written an O’Reilly
book without the help of Nancy Kotary, and I didn’t intend to start now; her sharp eye
has smoothed the bristles of my punctuation-laden style. For errors that remain, I take
responsibility, of course.

xxii | Preface

Table of Contents

Prefaceoovvreiiiiniiiiiiiieiiii i e rasie i eaaes Xvii
Partl. Language
T, JUSEEOOUGIG o ain wos v s mn mimnimm mon s i woms wow v i mm 0 e a0 om0 00 6 50 2565 2014 3
Compilation, Statements, and Comments 4
Variable Declaration, Initialization, and Data Types 6
Structs 8
Pointers 10
Arrays 11
Operators 13
Flow Control and Conditions 15
Functions 19
Pointer Parameters and the Address Operator 22
Files 24
The Standard Library 27
More Preprocessor Directives 27
Data Type Qualifiers 28
2. Object-Based Programmingocoviviiiiininiininnn. 3
Objects 31
Messages and Methods 32
Classes and Instances 33
Class Methods 36
Instance Variables 37
The Object-Based Philosophy 39
3. Objective-CObjectsand Messagesccovevvnnennnns 43
An Instance Reference Is a Pointer 43
Instance References, Initialization, and nil 44

Instance References and Assignment 47

Instance References and Memory Management 48
Messages and Methods 49
Sending a Message 50
Declaring a Method o1
Nesting Method Calls 52

No Overloading 52
Parameter Lists 53
Unrecognized Selectors 53
Typecasting and the id Type 55
Messages as Data Type 58

C Functions and Struct Pointers 59
Blocks 61

4. Objective-CCIaSSeSceuueeereeetieeeieee et eniieeraneeennnens 65
Class and Superclass 65
Interface and Implementation 66
Header File and Implementation File 68
Class Methods - 71
The Secret Life of Classes 71

5. Objective-CINStancescovvuuunieeeeiiiieeeeeiiieneeennnnnnn, 73
How Instances Are Created 73
Ready-Made Instances 73
Instantiation from Scratch 74
Nib-Based Instantiation 77
Polymorphism 78
The Keyword self 79
The Keyword super 82
Instance Variables and Accessors 84
Key—Value Coding 86
Properties 87
How to Write an Initializer 89

Partll. IDE

6. Anatomy ofanXcode Projectcovuiiiiiiieiiiieiiiiiiiieeann, 95
New Project 96
The Project Window 97
The Navigator Pane 99

The Utilities Pane 103

The Editor 104

vi | Table of Contents

The Project File and Its Dependents
The Target

Build Phases

Build Settings

Configurations

Schemes and Destinations
From Project to App

Build Settings

Property List Settings

Nib Files

Other Resources

Code

Frameworks and SDKs

NibManagementcoiiiiiiiiiiiiiiiinn

A Tour of the Nib-Editing Interface
The Dock
Canvas
Inspectors and Libraries
Nib Loading and File’s Owner
Default Instances in the Main Nib File
Making and Loading a Nib
Outlet Connections
More Ways to Create Outlets
More About Outlets
Action Connections
Additional Initialization of Nib-Based Instances

Documentationoiiiiiiiiii e

The Documentation Window
Class Documentation Pages
Sample Code
Other Resources

Quick Help

Symbols

Header Files

Internet Resources

[ife Cycleofa PYOJOCE « oo s wn s v o s ass 58 510 a5t i

Choosing a Device Architecture

Localization

Editing Your Code
Autocompletion

106
109
109
110
111
112
115
117
117
118
118
120
121

.................. 125

125
127
128
130
132
133
134
135
139
141
142
146

................... 149

150
152
155
156
156
157
157
158

.................. 159

159
162
163
164

Table of Contents | vii

Snippets 165

Live Syntax Checking 166
Navigating Your Code 166
Debugging 169

Caveman Debugging 169

The Xcode Debugger 171
Static Analyzer 176
Clean 177
Running in the Simulator 177
Running on a Device 178
Device Management 181
Version Control 181
Instruments 184
Distribution 184
Ad Hoc Distribution 186
Final App Preparations 187

Icons in the App 188

Other Icons 189

Launch Images 189

Screenshots 190

Property List Settings 191
Submission to the App Store 192

Partlll. Cocoa

10, €0C0aTIASSESveeee ettt etie e etee e eee e tie et eeeraneeennnes 197
Subclassing 197
Categories 200

Splitting a Class 201
Private Method Declarations 201
Protocols 202
Optional Methods 206
Some Foundation Classes 208
Useful Structs and Constants 208
NSString and Friends 208
NSDate and Friends 210
NSNumber 211
NSValue 211
NSData 212
Equality and Comparison 212
NSIndexSet 213
NSArray and NSMutableArray 213

viii | Table of Contents

11.

12.

13.

NSSet and Friends
NSDictionary and NSMutableDictionary
NSNull
Immutable and Mutable
Property Lists
The Secret Life of NSObject

COCOAEVENTS ..ttt ittt ittt ettt renaaas

Reasons for Events
Subclassing
Notifications
Receiving a Built-In Notification
Unregistering
NSTimer
Delegation
Data Sources
Actions
The Responder Chain
Deferring Responsibility
Nil-Targeted Actions
Application Lifetime Events
Swamped by Events

Accessors and Memory Management

Accessors

Key—Value Coding

Memory Management
The Golden Rules of Memory Management
How Cocoa Objects Manage Memory
Memory Management of Instance Variables
Instance Variable Memory Management Policies
Autorelease
Nib Loading and Memory Management
Memory Management Comments on Earlier Examples
Memory Management of Pointer-to-Void Context Info
Memory Management of C Struct Pointers

Properties

Data Communicationcoovviiiiiiirniinennennnn.

Model-View—Controller
Instance Visibility
Visibility by Instantiation
Visibility by Relationship

215
215
217
217
218
218

.............. 223

224
224
226
226
228
228
229
232
233
237
238
238
239
243

.............. 249

249
251
254
255
257
260
263
264
266
267
269
270
271

.............. 277

277
279
280
281

Table of Contents | ix

Global Visibility 281
Notifications 282
Key—Value Observing 284

PartIV. Views

Ty, NS .« oo s s i 000 008500008 00 8 6 0 3 6 68 500 5 51508 3 80 6 918 00 0 0 8 293
The Window 293
Subview and Superview 295
Frame 298
Bounds and Center 299
Layout 302
Transform 305
Visibility and Opacity 308

LTS 1 1T T 3N
Ullmage and UllmageView 311
Ullmage and Graphics Contexts 313
CGlmage 315
Drawing a UlView 318
Graphics Context State 320
Paths 321
Clipping 325
Gradients 326
Colors and Patterns 328
Graphics Context Transforms 330
Shadows 332
Points and Pixels 332
Content Mode 333

BO: LEYIOUS oo 5 00 5 50 005) 0 B 0 kD el § 0 0 335
View and Layer 336
Layers and Sublayers 337

Manipulating the Layer Hierarchy 339
Positioning a Sublayer 339
CAScrollLayer 340
Layout of Sublayers 341
Drawing in a Layer 341
Contents Image 341
Contents on Demand 342
Contents Resizing and Positioning 343
Layers that Draw Themselves 345

x | Table of Contents

17.

18.

Transforms

Depth

Transforms and Key—Value Coding
Shadows, Borders, and More
Layers and Key—Value Coding

ARIMAYTON « : w65 5 500 005 50 6 506 55516 506 w0 0 o 306 w0600 08 90

Drawing, Animation, and Threading
UllmageView Animation
View Animation
Animation Blocks
Modifying an Animation Block
Transition Animations
Block-Based View Animation
Implicit Layer Animation
Animation Transactions
Media Timing Functions
Core Animation
CABasicAnimation and Its Inheritance
Using a CABasicAnimation
Keyframe Animation
Making a Property Animatable
Grouped Animations
Transitions
The Animations List
Actions
What an Action Is
The Action Search
Hooking Into the Action Search
Nonproperty Actions

TOUCROS: & i 565 506 o056 606 5 6 0 608 00 & 506 6 0 6 o 3’6

Touch Events and Views

Receiving Touches

Restricting Touches

Interpreting Touches

Gesture Recognizers
Distinguishing Gestures Manually
Gesture Recognizer Classes
Multiple Gesture Recognizers
Subclassing Gesture Recognizers
Gesture Recognizer Delegate

Touch Delivery

346
350
352
353
354

..................... 357

358
361
362
362
363
366
368
371
372
373
374
375
376
379
380
381
385
386
389
389
390
391
394

..................... 397

398
400
401
402
408
408
412
416
418
419
422

Table of Contents | xi

Hit-Testing 423
Initial Touch Event Delivery 427
Gesture Recognizer and View 427
Touch Exclusion Logic 429
Recognition 430
Touches and the Responder Chain 431
PartV. Interface

19. ViewQontrollersccoviiniiiiiiiiiiiiiiiiiiiiiiiiiirsscienenn. 435
Creating a View Controller 437
Manual View Controller, Manual View 438
Manual View Controller, Nib View 441
Nib-Instantiated View Controller 443
No View 445
Up-Shifted Root View 446
Rotation 447
Initial Orientation 448
Rotation Events 452
Modal Views 453
Modal View Configuration 454
Modal View Presentation 456
Modal View Dismissal 457
Modal Views and Rotation 459
Tab Bar Controllers 461
Tab Bar Item Images 462
Configuring a Tab Bar Controller 463
Navigation Controllers 464
Bar Button Items 466
Configuring a Navigation Interface 468
Navigation Interface Rotation 474
View Controller Lifetime Events 476
View Controller Memory Management 477
20, SCIONTVIBWSo oo omcine oo i nis b mis 5005 50 6066 500 606 308 4 800 086 0 0 0000 W o 5 5 481
Creating a Scroll View 482
Scrolling 484
Paging 487
Tiling 488
Zooming 491
Zooming Programmatically 493
Zooming with Detail 493

xii | Table of Contents

