dview RZIXHe fE t 42 045

www.broadview.com.cn

Clean Code

(5 ERR)

= Robert C. Martin =

>lean Code

*?rl)fi‘. &11

=11 hnp Iwww. ph i.com.cn

EHEEE s }

. Eternal Classics |

Clean Code ()

Clean Code

[%] Robert C. Martin
BE

% F 3 ¥ & MR AL
Publishing House of Electronics Industry
JL3C-BEIING

R

PR, AMBRGEEH RO H A, T H SR EWARK. X, TR BEEITRARE
RAEGTRFIR, BAERKN. BBRE—FHIE: RARRSHEHEERIEN. TRORE, BT
B LB ETSE, WAEGE . THEBE T REFIERL . ABEERSI T —RIUT A RINEG
AR, XSS AC R P ARE D — RN (BRFR TR) PR BEILSEITHBYIE RETT
T, REEX LN, MAES H TR, A B TR H HR

FAE BN TR R R R R ARG BN AR B RS BERNERE
%, WMEAGLBERNEANE, B K" 25, RUAHEERNL.

A Clean Code —FHIVIER, JBENWREFRNE, EISURFREADL HRINT TIOIF
RIGERE, SemA —H2 K, BRAFASHNELSCEERE, NLSET RN LGS e, X
FH RN SIMUARER, RV,

Authorized Adaptation from the English language edition, entitled CLEAN CODE: A HANDBOOK OF
AGILE SOFTWARE CRAFTSMANSHIP, 1E, 9780132350884 by MARTIN, ROBERT C., published by
Pearson Education, Inc, publishing as Prentice Hall, Copyright © 2009.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education, Inc.

ENGLISH language adaptation edition published by Pearson Education Asia Ltd. and Publishing House of
Electronics Industry, Copyright ©2012. ENGLISH language adaptation edition is manufactured in the People’s
Republic of China, and is authorized for sale only in the mainland of China exclusively (except Hong Kong
SAR, Macau SAR, and Taiwan).

A BET B NERIRS A AL tH Pearson Education 354 # 8 AR LA PRA RIS T 7 Tk iRt .
R HARE TS BEYY, AR RE RSP RSB RETE .

AP EAMERN (MEHEES. BITETEREAHEEER) HERIT.

A4 Pearson Education B E#H HARERHOCH I thIng, TrEHE A EHE.

A S A RBE S BT 01-2011-8008

ERAEMBRE (CIP) i

Clean Code: FREM / () T (Martin, R.C.) 3; #&FE. —IbR: BTkl 2012.2
€131 23 B LYY

F54 8 3C: Clean Code: A Handbook of Agile Software Craftsmanship

ISBN 978-7-121-15505-5

[.@OC 1. 0% @i Il OMFER V. OTP311.52

R ERR A 451 CIP $dRiZT (2011) 28 264391 5

TTdmiE. REr
B Rl AbstEEERR
¥ AT =TT SARENAA R A H
WAL BT Tk HAR
WX T HE 173 1548 WB4s 100036
F A& 787X980 1/16 ENEK: 31 FH: 600 TF
Bl 7K. 20124F2 HE 1 IKEIR]
E i 79.00 0T
FUFTT BT Tl iR B) B, & LR . RS, E S A AT
7, BRANMIEHE: (010) 88254888,
FEERERIE Zis@phei.com.cn, HERIBBISIRIEKRIITEZE dbgq@phei.com.cn.
MR #sk: (010) 88258888,

tH hizis FA

Hixr&E BEEAL

LFz: “BEPHE APHS; BOFEH BFRT; BREET, MEHER".

X FEEARAM S, XAGIIERITEERY B, RFRFHTH_ER—&ME b, P A REEN
HFARY, FAE#EXPEMRESAE™BE, M AENHE AT, HERAREPRMWEEEE, 20
25 PEOREBE, L T M TR E , BN S MM DUEE R SR E R B EERE,

BB, sk b, RISHEAIE R . ARES JhR A 3 SMNEE R | RITIEEIEABKIESR, BN
SRR QRSB E K EBHRIS, 3 HIA AR E RIS 6, sk
Al BRI TR LB AR T A R R B 1 B B TP 4R, XA R AR AR, | R AR BE RN B —Fh AR | B KIE
PR, [A R — M BE R Z, B—Fhtl.

SHEARKGRA, 248 1T BoRHEK A BN FERRER . RIFHSERR, ATy kR EIE
BT T RERAYE ST SUEAR MEBPREE £ 26, TR , AERZ FiX —H kR R MR B EE, 7
ERIHAEHE m ARRERIEROE , X R R L L4 E AR RIS SAERRMTAE S, 2R
HMIEESNEHT S E AR, AT BHR T E AR BB AR, RIBRA AT DU N S iR a1
TR, R IER M R RHE?

AT AEENERE , LR ABAREENFT —UEE , KX e R T & 16084, A
HAR IT KA B 43, R BOR AR RV OAERNRAT, BREAEX M AUHLBEE TR, IRIMAH
LW T AU Pearson 7] WL “FFH2H BN,

FERATIRF, “EtHEI A /o T— BB S BRI IER , TS SR E . RI2 8
R, ROV RB] T e SRR AP AR ZENE , 48— T,

1 duEIEXmEE

AREEAR, BRIOIKESH T HSMUBHUETIPN IR R, 37881 T Pearson TR, St

— AR EREZ BB E S O S R B I TARBOMT, LIFB T BB AR R E BN, AH %
X E N EEE BB A BRI LA

W FRRAER PR B

FAMIARIFFAFEZ R, REPERIMIFHRDEHTEARE; BEASHAREAE, RES
IEADA R AEEE T e AN BHIE Bk, EEITHFREFESRABMENIRE, SEFBREBEN
L RABRR B EAREERAANNRER, TR -8 558, A w xR TS BAR A L.

W B ST NThEE

SIHERESMESE , HHBIEA P B E N RE FE, BAER S ARE —BINEK TR, B
HRRFERRARE , B THEAERARL , PRI RSFEEGROEY , BEAARSS /R fi—Ht4 1
BRI K 0 My e ST, BRELIBERX —THE A ETUL, AABAEBRRMFENELRE
BECRE S SOR T R ETREAR , BEA R B R H B ik,

R — T O R

MFRZECAERLFACOVEIER L&, MEESMHESY, MREBNMFERE - EREENEE
VR PRERAES a8, FRERBTIFER WREA R E, AABRE T AEZROBER & &
HOARTRISCR, B R RITERAMEE, S0k A2 5FETEERMAINS SHRIET 288 5 R, BEEICHR
IIHgREAA A0S BB R AL T — R SRR

B MEHESIRE RITFHMIRER

—AH A AR BLA IL TARBER, RIFHRBERZ AR, B2l RS ik s
otk 5 b A ARRREORTE , FAT 1 B AR Sk AUR E FIREAR R R, R PR E T h ek T 2RILE
A, A AP B S B RS RRE

ASEABHBKAR, RERAIER, HERLCHEZ O ST REE R EE ARG
BBl ok P RA RIS, A E AT RAT AR SR A PIERIE , BB HRITE R, SRR SETEX
—TH R b ST W T N AR AL IR AR F RS

AL Tk AR SO

=y

PR

Tl
Iy
Tt
ey

REBZEFSETE

2007 423 H, RFE SD West 2007 HiR A% LIRWT T Robert C. Martin (#1240
B £ Crafismanship and the Problem of Productivity: Secrets for Going Fast without
Making a Mess. — 2 RRITH IR, LL— B REKF4IEE K Code Monkey

(REBRT Fig.

B, RATE—BAREERT, HETH, BUULSRE TREMEN. 7E, X4
BAE LB T, SEFEFELIIRE EE, X 8 CERMREL B . A
“TRIETT” IELKRER, BMTEERMMR R TI8E R

MIT AR LA TDD A EMEIE G, BR—EXEMSIAN, &FM7E TDD
MEEREITENTR.

XA 4K Clean Code, 73 Object Mentor (#fiZh KBTI HE AR B WA EE Y A 7))
—FTREEHESTNEK R EHHXBUERD, #E “Object Mentor BiE{X
BIUR” UL . '

IE40 Coplien ZEFHETE, ERERTPEADIITS, WRAEHIT. FRLE
TR, EERRILMEE, HSBBEN KRB IRKER—XREEER
B2 BT . Coplien 5|2 T 2 Z1E HEHEEMME, PEBFE “B8. FFK. HE.
FERT” 2. BERBHEERBHEESRE, REENAEHEEREHINRE.

AR ERBRESN, RS HBEHR NS, KB Y, “B#
WHHRAREE, FEMEFARN/DET, BHZENBN BER . XM R B2
KEEPTLE - BEAGERMNEFIRERRS, & FRATCHERIAZ 14095 AR R
BE.” {EEMR TAEMmA . R 8. REsX. IENLEEEH. HR4E. URf
. RO, B RE. FRFESHTEHOABBBENERSBEETR. K1
HRXEZEHmERE, g “ARBR7 i BAMAREE K. EFMENTS L

VI

B KBUA AR 3 A Java T H MHIHT S BA et F . Btk 3 EERE
X, SRR ASHIER T EFEENAREONBRAEEM: BTN ELRIN TR
o AT REEEAEKRARE, BAXESURD KA A3 M4 K 2 Hk
PERAAMIRE . R EFAEMEER, ATEM B S5EINE (cleancode.cn@gmail.
com).

FRIT R 10 ZELR, RN IT BAREETE 6 00k, RATHS
NTRIEBEERE EREMNTFRE . Ao, XRFWEFRSEAHNE
BRFE. AARFMIPE, SSEMERNFAEEXGHE DT RS NEVLR MZFRN A
JIHIRTFE

HEABHERETD, HPHRKBURI ALK —&BH, EEAFHER “Test
Obsessed” (PTAMR). MM “ KU B EER TR FMUEENBHRE,
T H AR R LRI E— HIRER, RM T BHEERBRAE.”HT
X, RBRTRTEBETE., B8, SATREFTEXE—LpHm!

&

VII

Foreword

One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a
perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to
us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-
pack of the delicacy this morning and found that it bore this old Danish saw:

AErlighed i smd ting er ikke nogen lille ting.

“Honesty in small things is not a small thing.” It was a good omen consistent with what I
already wanted to say here. Small things matter. This is a book about humble concerns
whose value is nonetheless far from small.

God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls
contemporary arguments about the role of architecture in software development, and par-
ticularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in
this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms
of building that underlie great architecture. On the other hand, he also personally selected
every doorknob for every house he designed. Why? Because small things matter.

In our ongoing “debate” on TDD, Bob and I have discovered that we agree that soft-
ware architecture has an important place in development, though we likely have different
visions of exactly what that means. Such quibbles are relatively unimportant, however,
because we can accept for granted that responsible professionals give some time to think-
ing and planning at the outset of a project. The late-1990s notions of design driven only by
the tests and the code are long gone. Yet attentiveness to detail is an even more critical
foundation of professionalism than is any grand vision. First, it is through practice in the
small that professionals gain proficiency and trust for practice in the large. Second, the
smallest bit of sloppy construction, of the door that does not close tightly or the slightly
crooked tile on the floor, or even the messy desk, completely dispels the charm of the
larger whole. That is what clean code is about.

Still, architecture is just one metaphor for software development, and in particular for
that part of software that delivers the initial product in the same sense that an architect
delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly
bringing product to market. We want the factory running at top speed to produce sofiware.
These are human factories: thinking, feeling coders who are working from a product back-

VIII

log or user story to create product. The manufacturing metaphor looms ever strong in such
thinking. The production aspects of Japanese auto manufacturing, of an assembly-line
world, inspire much of Scrum.

Yet even in the auto industry, the bulk of the work lies not in manufacturing but in
maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called
“maintenance”: the act of repair. Rather than embracing the typical Western focus on pro-
ducing good software, we should be thinking more like home repairmen in the building
industry, or auto mechanics in the automotive field. What does Japanese management have
to say about that?

In about 1951, a quality approach called Total Productive Maintenance (TPM) came
on the Japanese scene. Its focus is on maintenance rather than on production. One of the
major pillars of TPM is the set of so-called 58S principles. 58S is a set of disciplines—and
here I use the term “discipline” instructively. These 58S principles are in fact at the founda-
tions of Lean—another buzzword on the Western scene, and an increasingly prominent
buzzword in software circles. These principles are not an option. As Uncle Bob relates in
his front matter, good software practice requires such discipline: focus, presence of mind,
and thinking. It is not always just about doing, about pushing the factory equipment to pro-
duce at the optimal velocity. The 5S philosophy comprises these concepts:

* Seiri, or organization (think “sort” in English). Knowing where things are—using
approaches such as suitable naming—is crucial. You think naming identifiers isn’t
important? Read on in the following chapters.

* Seiton, or tidiness (think “systematize” in English). There is an old American saying:

A place for everything, and everything in its place. A piece of code should be where
you expect to find it—and, if not, you should re-factor to get it there.

* Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging
wires, grease, scraps, and waste. What do the authors here say about littering your
code with comments and commented-out code lines that capture history or wishes for
the future? Get rid of them.

¢ Seiketsu, or standardization: The group agrees about how to keep the workplace clean.
Do you think this book says anything about having a consistent coding style and set of
practices within the group? Where do those standards come from? Read on.

* Shutsuke, or discipline (self-discipline). This means having the discipline to follow the
practices and tg frequently reflect on one’s work and be willing to change.

If you take up the challenge—yes, the challenge—of reading and applying this book,
you’ll come to understand and appreciate the last point. Here, we are finally driving to the
roots of responsible professionalism in a profession that should be concerned with the life
cycle of a product. As we maintain automobiles and other machines under TPM, break-
down maintenance—waiting for bugs to surface—is the exception. Instead, we go up a
level: inspect the machines every day and fix wearing parts before they break, or do the
equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code,

IX

refactor mercilessly. You can improve yet one level further, as the TPM movement inno-
vated over 50 years ago: build machines that are more maintainable in the first place. Mak-
ing your code readable is as important as making it executable. The ultimate practice,
introduced in TPM circles around 1960, is to focus on introducing entire new machines or
replacing old ones. As Fred Brooks admonishes us, we should probably re-do major soft-
ware chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps
we should update Brooks’ time constant to an order of weeks, days or hours instead of
years. That’s where detail lies.

There is great power in detail, yet there is something humble and profound about this
approach to life, as we might stereotypically expect from any approach that claims Japa-
nese roots. But this is not only an Eastern outlook on life; English and American folk wis-
dom are full of such admonishments. The Seiton quote from above flowed from the pen of
an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.”
How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy
desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful
in little is faithful in much. How about being eager to re-factor at the responsible time,
strengthening one’s position for subsequent “big” decisions, rather than putting it off? 4
stitch in time saves nine. The early bird catches the worm. Don't put off until tomorrow
what you can do today. (Such was the original sense of the phrase “the last responsible
moment” in Lean until it fell into the hands of software consultants.) How about calibrat-
ing the place of small, individual efforts in a grand whole? Mighty oaks from little acorns
grow. Or how about integrating simple preventive work into everyday life? 4n ounce of
prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code
honors the deep roots of wisdom beneath our broader culture, or our culture as it once was,
or should be, and carn be with attentiveness to detail.

Even in the grand architectural literature we find saws that hark back to these sup-
posed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive
to every variable name. You should name a variable using the same care with which you
name a first-born child.

As every homeowner knows, such care and ongoing refinement never come to an end.
The architect Christopher Alexander—father of patterns and pattern languages—views
every act of design itself as a small, local act of repair. And he views the craftsmanship of
fine structure to be the sole purview of the architect; the larger forms can be left to patterns
and their application by the inhabitants. Design is ever ongoing not only as we add a new
room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrad-
ing the kitchen sink. Most arts echo analogous sentiments. In our search for others who
ascribe God’s home as being in the details, we find ourselves in the good company of the
19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a
poem is never done and bears continual rework, and to stop working on it is abandonment.
Such preoccupation with detail is common to all endeavors of excellence. So maybe there
is little new here, but in reading this book you will be challenged to take up good disci-
plines that you long ago surrendered to apathy or a desire for spontaneity and just

X

“responding to change.”

Unfortunately, we usually don’t view such concerns as key cornerstones of the art of
programming. We abandon our code early, not because it is done, but because our value
system focuses more on outward appearance than on the substance of what we deliver.

This inattentiveness costs us in the end: 4 bad penny always shows up. Research, neither in
industry nor in academia, humbles itself to the lowly station of keeping code clean. Back
in my days working in the Bell Labs Software Production Research organization (Produc-
tion, indeed!) we had some back-of-the-envelope findings that suggested that consistent
indentation style was one of the most statistically significant indicators of low bug density.
We want it to be that architecture or programming language or some other high notion
should be the cause of quality; as people whose supposed professionalism owes to the
mastery of tools and lofty design methods, we feel insulted by the value that those factory-
floor machines, the coders, add through the simple consistent application of an indentation
style. To quote my own book of 17 years ago, such style distinguishes excellence from
mere competence. The Japanese worldview understands the crucial value of the everyday
worker and, more so, of the systems of development that owe to the simple, everyday
actions of those workers. Quality is the result of a million selfless acts of care—not just of
any great method that descends from the heavens. That these acts are simple doesn’t mean
that they are simplistic, and it hardly means that they are easy. They are nonetheless the
fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not
yet to be fully human.

Of course, I am still an advocate of thinking at broader scope, and particularly of the
value of architectural approaches rooted in deep domain knowledge and software usability.
The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler
message whose profoundness should not be underappreciated. It fits with the current saw -
of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni
Asproni. “The code is the design” and “Simple code” are their mantras. While we must
take care to remember that the interface is the program, and that its structures have much
to say about our program structure, it is crucial to continuously adopt the humble stance
that the design lives in the code. And while rework in the manufacturing metaphor leads to
cost, rework in design leads to value. We should view our code as the beautiful articulation
of noble efforts of design—design as a process, not a static endpoint. It’s in the code that
the architectural metrics of coupling and cohesion play out. If you listen to Larry Constan-
tine describe coupling and cohesion, he speaks in terms of code—not lofty abstract con-
cepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction
Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.

Going back to my little box of Ga-Jol, I think it’s important to note that the Danish
wisdom advises us not just to pay attention to small things, but also to be konest in small
thirigs. This means being honest to the code, honest to our colleagues about the state of our
code and, most of all, being honest with ourselves about our code. Did we Do our Best to
“leave the campground cleaner than we found it”? Did we re-factor our code before check-
ing in? These are not peripheral concerns but concerns that lie squarely in the center of

XI

Agile values. It is a recommended practice in Scrum that re-factoring be part of the con-
cept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty
and doing the best we can. 7o err is human, to forgive, divine. In Scrum, we make every-
thing visible. We air our dirty laundry. We are honest about the state of our code because
code is never perfect. We become more fully human, more worthy of the divine, and closer
to that greatness in the details.

In our profession, we desperately need all the help we can get. If a clean shop floor
reduces accidents, and well-organized shop tools increase productivity, then I’m all for
them. As for this book, it is the best pragmatic application of Lean principles to software [
have ever seen in print. I expected no less from this practical little group of thinking indi-
viduals that has been striving together for years not only to become better, but also to gift
their knowledge to the industry in works such as you now find in your hands. It leaves the
world a little better than I found it before Uncle Bob sent me the manuscript.

Having completed this exercise in lofty insights, I am off to clean my desk.

James O. Coplien
Mardrup, Denmark

X1I

Introduction

o,

r LH@ C:;ML.?«’ VAL u@f ME AYURE Men T

OF Code QUALTy: W’T?sfmuuvg

;ﬁ’"‘“
A
WTF i‘l’g' f’S‘

I

Wik

| i \ Mo
CoOae wre i cocle L od,
ReView JARRN | REVIEW A
- - W
- i ‘gﬂ o

(c) 2008 Focus Shift

Goodk code

Reproduced with the kind permission of Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m

Which door represents your code? Which door represents your team or your company?
Why are we in that room? Is this just a normal code review or have we found a stream of

X1

horrible problems shortly after going live? Are we debugging in a panic, poring over code
that we thought worked? Are customers leaving in droves and managers breathing down
our necks? How can we make sure we wind up behind the right door when the going gets
tough? The answer is: crafismanship.

There are two parts to learning craftsmanship: knowledge and work. You must gain
the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and
you must also grind that knowledge into your fingers, eyes, and gut by working hard and
practicing.

I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is
relatively straightforward. Gravity, friction, angular momentum, center of mass, and so
forth, can be demonstrated with less than a page full of equations. Given those formulae I
could prove to you that bicycle riding is practical and give you all the knowledge you
needed to make it work. And you'd still fall down the first time you climbed on that bike.

Coding is no different. We could write down all the “feel good™ principles of clean
code and then trust you to do the work (in other words, let you fall down when you get on
the bike), but then what kind of teachers would that make us, and what kind of student
would that make you?

No. That’s not the way this book is going to work.

Learning to write clean code is sard work. It requires more than just the knowledge of
principles and patterns. You must sweat over it. You must practice it yourself, and watch
yourself fail. You must watch others practice it and fail. You must see them stumble and
retrace their steps. You must see them agonize over decisions and see the price they pay for
making those decisions the wrong way.

Be prepared to work hard while reading this book. This is not a “feel good” book that
you can read on an airplane and finish before you land. This book will make you work, and
work hard. What kind of work will you be doing? You’ll be reading code—lots of code.
And you will be challenged to think about what’s right about that code and what’s wrong
with it. You’ll be asked to follow along as we take modules apart and put them back
together again. This will take time and effort; but we think it will be worth it.

We have divided this book into three parts. The first several chapters describe the prin-
ciples, patterns, and practices of writing clean code. There is quite a bit of code in these
chapters, and they will be challenging to read. They’ll prepare you for the second section
to come. If you put the book down after reading the first section, good luck to you!

The second part of the book is the harder work. It consists of several case studies of
ever-increasing complexity. Each case study is an exercise in cleaning up some code—of
transforming code that has some problems into code that has fewer problems. The detail in
this section is intense. You will have to flip back and forth between the narrative and the
code listings. You will have to analyze and understand the code we are working with and
walk through our reasoning for making each change we make. Set aside some time
because this should take you days.

X1V

The third part of this book is the payoff. It is a single chapter containing a list of heu-
ristics and smells gathered while creating the case studies. As we walked through and
cleaned up the code in the case studies, we documented every reason for our actions as a
heuristic or smell. We tried to understand our own reactions to the code we were reading
and changing, and worked hard to capture why we felt what we felt and did what we did.
The result is a knowledge base that desribes the way we think when we write, read, and
clean code.

This knowledge base is of limited value if you don’t do the work of carefully reading
through the case studies in the second part of this book. In those case studies we have care-
fully annotated each change we made with forward references to the heuristics. These for-
ward references appear in square brackets like this: [H22]. This lets you see the context in
which those heuristics were applied and written! It is not the heuristics themselves that are
so valuable, it is the relationship between those heuristics and the discrete decisions we
made while cleaning up the code in the case studies.

To further help you with those relationships, we have placed a cross-reference at the end
of the book that shows the page number for every forward reference. You can use it to look
up each place where a certain heuristic was applied.

If you read the first and third sections and skip over the case studies, then you will
have read yet another “feel good” book about writing good software. But if you take the
time to work through the case studies, following every tiny step, every minute decision—if
you put yourself in our place, and force yourself to think along the same paths that we
thought, then you will gain a much richer understanding of those principles, patterns, prac-
tices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been
ground into your gut, fingers, and heart. They’ll have become part of you in the same way
that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible
for the stunning and creative pictures at the start of each chapter and also for the portraits
of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave
Thomas, Michael Feathers, and myself.

Angela is responsible for the clever pictures that adorn the innards of each chapter.
She has done quite a few pictures for me over the years, including many of the inside pic-
tures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my
firstborn in whom I am well pleased.

A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey
Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were
relentless. They pushed me hard to make necessary improvements.

XV

Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial
countenance, Thanks also to the editorial staff at Pearson, including Raina Chrobak for
keeping me honest and punctual.

Thanks to Micah Martin, and all the guys at 8th Light (www.Bthlight.com) for their
reviews and encouragement.

Thanks to all the Object Mentors, past, present, and future, including: Bob Koss,
Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett
Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button,
Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen
Craig, Janice Brown, Susan Rosso, et al.

Thanks to Jim Newkirk, my friend and business partner, who taught me more than
1 think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne
Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John
Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to
rant on about how long a function should be.

And, finally, thank you for reading these thank yous.

On the Cover

The image on the cover is M104: The Sombrero Galaxy. M104 is located in Virgo and is
just under 30 million light-years from us. At it’s core is a supermassive black hole weigh-
ing in at about a billion solar masses.

Does the image remind you of the explosion of the Klingon power moon Praxis? I
vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying
away from that explosion. Since that scene, the equatorial ring has been a common artifact
in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions
of the first Star Wars moric.

What caused this ring to form around M104? Why does it have such a huge central
bulge and such a bright and tiny nucleus? It looks to me as though the central black hole
lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any
civilizations that might have been in the path of that cosmic disruption.

Supermassive black holes swallow whole stars for lunch, converting a sizeable frac-
tion of their mass to energy. E = MC" is leverage enough, but when M is a stellar mass:

Look out! How many stars fell headlong into that maw before the monster was satiated?
Could the size of the central void be a hint?

The image of M104 on the cover is a combination of the famous visible light pho-
tograph from Hubble (right), and the recent infrared image from the Spitzer orbiting
observatory (below, right). It’s the infrared image that clearly shows us the ring nature
of the galaxy. In visible light we only see the front edge of the ring in sithouette. The cen-
tral bulge obscures the rest of the ring.

But in the infrared, the hot particles in the ring shine through the central bulge.The

two images combined give us a view we’ve not seen before and imply that long ago it
was a raging inferno of activity.

Cover image: © Spitzer Space Telescope

