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Preface

This textbook is intended for students who wish to obtain an introduction to
the theory of partial differential equations (PDEs, for short), in particular,
those of elliptic type. Thus, it does not offer a comprehensive overview of
the whole field of PDEs, but tries to lead the reader to the most important
methods and central results in the case of elliptic PDEs. The guiding ques-
tion is how one can find a solution of such a PDE. Such a solution will, of
course, depend on given constraints and, in turn, if the constraints are of
the appropriate type, be uniquely determined by them. We shall pursue a
number of strategies for finding a solution of a PDE; they can be informally
characterized as follows:

(0) Write down an explicit formula for the solution in terms of the given

data (constraints).
This may seem like the best and most natural approach, but this is
possible only in rather particular and special cases. Also, such a formula
may be rather complicated, so that it is not very helpful for detecting
qualitative properties of a solution. Therefore, mathematical analysis has
developed other, more powerful, approaches.

(1) Solve a sequence of auziliary problems that approximate the given one,

and show that their solutions converge to a solution of that originel prob-
lem.
Differential equations are posed in spaces of functions, and those spaces
are of infinite dimension. The strength of this strategy lies in carefully
choosing finite-dimensional approximating problems that can be solved
explicitly or numerically and that still share important crucial features
with the original problem. Those features will allow us to control their
solutions and to show their convergence.

(2) Start anywhere, with the required constraints satisfied, and let things flow

toward a solution.
This is the diffusion method. It depends on characterizing a solution
of the PDE under consideration as an asymptotic equilibrium state for
a diffusion process. That diffusion process itself follows a PDE, with an
additional independent variable. Thus, we are solving a PDE that is more
complicated than the original one. The advantage lies in the fact that we
can simply start anywhere and let the PDE control the evolution.
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(3) Solve an optimization problem, and identify an optimal state as a so-
lution of the PDE.
This is a powerful method for a large class of elliptic PDEs, namely,
for those that characterize the optima of variational problems. In fact,
in applications in physics, engineering, or economics, most PDEs arise
from such optimization problems. The method depends on two princi-
ples. First, one can demonstrate the existence of an optimal state for a
variational problem under rather general conditions. Second, the optimal-
ity of a state is a powerful property that entails many detailed features:
If the state is not very good at every point, it could be improved and
therefore could not be optimal.

(4) Connect what you want to know to what you know already.
This is the continuity method. The idea is that, if you can connect your
given problem continuously with another, simpler, problem that you can
already solve, then you can also solve the former. Of course, the contin-
uation of solutions requires careful control.

The various existence schemes will lead us to another, more technical, but
equally important, question, namely, the one about the regularity of solutions
of PDEs. If one writes down a differential equation for some function, then one
might be inclined to assume explicitly or implicitly that a solution satisfies
appropriate differentiability properties so that the equation is meaningful.
The problem, however, with many of the existence schemes described above
is that they often only yield a solution in some function space that is so large
that it also contains nonsmooth and perhaps even noncontinuous functions.
The notion of a solution thus has to be interpreted in some generalized sense.
It is the task of regularity theory to show that the equation in question forces
a generalized solution to be smooth after all, thus closing the circle. This will
be the second guiding problem of the present book.

The existence and the regularity questions are often closely intertwined.
Regularity is often demonstrated by deriving explicit estimates in terms of
the given constraints that any solution has to satisfy, and these estimates
in turn can be used for compactness arguments in existence schemes. Such
estimates can also often be used to show the uniqueness of solutions, and of
course, the problem of uniqueness is also fundamental in the theory of PDEs.

After this informal discussion, let us now describe the contents of this
book in more specific detail.

Our starting point is the Laplace equation, whose solutions are the har-
monic functions. The field of elliptic PDEs is then naturally explored as a
generalization of the Laplace equation, and we emphasize various aspects on
the way. We shall develop a multitude of different approaches, which in turn
will also shed new light on our initial Laplace equation. One of the important
approaches is the heat equation method, where solutions of elliptic PDEs
are obtained as asymptotic equilibria of parabolic PDEs. In this sense, one
chapter treats the heat equation, so that the present textbook definitely is
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not confined to elliptic equations only. We shall also treat the wave equation
as the prototype of a hyperbolic PDE and discuss its relation to the Laplace
and heat equations. In the context of the heat equation, another chapter de-
velops the theory of semigroups and explains the connection with Brownian
motion.

Other methods for obtaining the existence of solutions of elliptic PDEs,
like the difference method, which is important for the numerical construction
of solutions; the Perron method; and the alternating method of H.A. Schwarz;
are based on the maximum principle. We shall present several versions of the
maximum principle that are also relevant for applications to nonlinear PDEs.

In any case, it is an important guiding principle of thistextbook to develop
methods that are also useful for the study of nonlinear equations, as those
present the research perspective of the future. Most of the PDEs occurring
in applications in the sciences, economics, and engineering are of nonlinear
types. One should keep in mind, however, that, because of the multitude of
occurring equations and resulting phenomena, there cannot exist a unified
theory of nonlinear (elliptic) PDEs, in contrast to the linear case. Thus,
there are also no universally applicable methods, and we aim instead at doing
justice to this multitude of phenomena by developing very diverse methods.

Thus, after the maximum principle and the heat equation, we shall
encounter variational methods, whose idea is represented by the so-called
Dirichlet principle. For that purpose, we shall also develop the theory of
Sobolev spaces, including fundamental embedding theorems of Sobolev, Mor-
rey, and John-Nirenberg. With the help of such results, one can show the
smoothness of the so-called weak solutions obtained by the variational ap-
proach. We also treat the regularity theory of the so-called strong solutions,
as well as Schauder’s regularity theory for solutions in Hélder spaces. In this
context, we also explain the continuity method that connects an equation
that one wishes to study in a continuous manner with one that one under-
stands already and deduces solvability of the former from solvability of the
latter with the help of a priori estimates.

The final chapter develops the Moser iteration technique, which turned
out to be fundamental in the theory of elliptic PDEs. With that technique one
can extend many properties that are classically known for harmonic functions
(Harnack inequality, local regularity, maximum principle) to solutions of a
large class of general elliptic PDEs. The results of Moser will also allow
us to prove the fundamental regularity theorem of de Giorgi and Nash for
minimizers of variational problems.

At the end of each chapter, we briefly summarize the main results, occa-
sionally suppressing the precise assumptions for the sake of saliency of the
statements. I believe that this helps in guiding the reader through an area
of mathematics that does not allow a unified structural approach, but rather
derives its fascination from the multitude and diversity of approaches and
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methods, and consequently encounters the danger of getting lost in the tech-
nical details.

Some words about the logical dependence between the various chapters:
Most chapters are composed in such a manner that only the first sections are
necessary for studying subsequent chapters. The first—rather elementary—
chapter, however, is basic for understanding almost all remaining chapters.
Section 2.1 is useful, although not indispensable, for Chapter 3. Sections 4.1
and 4.2 are important for Chapters 6 and 7. Sections 8.1 to 8.4 are fundamen-
tal for Chapters 9 and 12, and Section 9.1 will be employed in Chapters 10
and 12. With those exceptions, the various chapters can be read indepen-
dently. Thus, it is also possible to.vary the order in which the chapters are
studied. For example, it would make sense to read Chapter 8 directly after
Chapter 1, in order to see the variational aspects of the Laplace equation (in
particular, Section 8.1) and also the transformation formula for this equa-
tion with respect to changes of the independent variables. In this way one is
naturally led to a larger class of elliptic equations. In any case, it is usually
not very efficient to read a mathematical textbook linearly, and the reader
should rather try first to grasp the central statements.

The present book can be utilized for a one-year course on PDEs, and if
time does not allow all the material to be covered, one could omit certain
sections and chapters, for example, Section 3.3 and the first part of Section 3.4
and Chapter 10. Of course, the lecturer may also decide to omit Chapter 12
if he or she wishes to keep the treatment at a more elementary level.

This book is based on a one-year course that I taught at the Ruhr Univer-
sity Bochum, with the support of Knut Smoczyk. Lutz Habermann carefully
checked the manuscript and offered many valuable corrections and sugges-
tions. The KTEX work is due to Micaela Krieger and Antje Vandenberg.

The present book is a somewhat expanded translation of the original
German version. I have also used this opportunity to correct some misprints in
that version. I am grateful to Alexander Mielke, Andrej Nitsche, and Friedrich
Tomi for pointing out that Lemma 4.2.3, and to C.G. Simader and Matthias
Stark that the proof of Corollary 8.2.1 were incorrect in the German version.

Leipzig, Germany Jiirgen Jost



Preface to the 2nd Edition

For this new edition, I have written a new chapter on reaction-diffusion equa-~
tions and systems. Such equations or systems combine a linear elliptic or
parabolic differential operator, of the type extensively studied in this book,
with a non-linear reaction term. The result are phenomena that can be ob-
tained by neither of the two processes — linear diffusion or non-linear reaction
as in ordinary differential equations or systems - in isolation. The patterns
resulting from this interplay of local non-linear self-interactions and global
diffusion in space, such as travelling waves or Turing patterns, have been pro-
posed as models for many biological and chemical structures and processes.
Therefore, such reaction-diffusion systems are very popular in mathemat-
ical biology and other fields concerned with non-linear pattern formation.
In mathematical terms, their success stems from the fact that, through a
combination of the PDE techniques developed in this book and some dynam-
ical systems methods, a penetrating and often rather complete mathematical
analysis can be achieved. — This new chapter is inserted after Chapter 4 that
deals with linear parabolic equations, since this is the area of PDEs that is
basic for studying reaction-diffusion equations. While the new chapter thus
finds its most natural place there, occasionally, we also need to invoke some
results from subsequent chapters, in particular from §9.5 about eigenvalues of
the Laplace operator. Still, we find it preferable to discuss reaction-diffusion
equations and systems at this earlier place so that we can emphasize the
parabolic diffusion phenomena. This chapter also provides us with the op-
portunity of a glimpse at systems of PDEs as opposed to single equations.
That is, we study scalar functions each of which satisfies a PDE and which
are coupled through non-linear interaction terms. Of course, the field of sys-
tems of PDEs is richer than this, and more difficult couplings are possible
and important, but this seems to be the point to which we can reasonably
get in an introductory textbook.

I have also rewritten §11.1 (§10.1 in the previous edition, but due to the
insertion of the new chapter, subsequent chapter numberings are shifted in
the present edition) on the Hélder regularity of solutions of the Poisson equa-
tion. The previous proof had a problem. While that problem could have been
resolved, I preferred to write a new proof based on scaling relations that is
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perhaps more insightful than the previous one.

The new edition also contains numerous other additions, about Neumann
boundary value problems, Poincaré inequalities, expansions,..., as well as
some minor (mostly typographical) corrections. I thank some careful readers
for relevant comments.

Leipzig, Aug.2006 Jiirgen Jost
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Introduction:
What Are Partial Differential Equations?

As a first answer to the question, What are partial differential equations, we
would like to give a definition:

Definition 1: A partial differential equation (PDE) is an equation involving
derivatives of an unknown function u: 2 — R, where 2 is an open subset
of R, d > 2 (or, more generally, of a differentiable manifold of dimension
d>2).

Often, one also considers systems of partial differential equations for
vector-valued functions u: 2 = RY, or for mappings with values in a differ-
entiable manifold.

The preceding definition, however, is misleading, since in the theory of
PDEs one does not study arbitrary equations but concentrates instead on
those equations that naturally occur in various applications (physics and
other sciences, engineering, economics) or in other mathematical contexts.

Thus, as a second answer to the question posed in the title, we would
like to describe some typical examples of PDEs. We shall need a little bit of
notation: A partial derivative will be denoted by a subscript,

Ou )
51-‘? fOl"l—l,...,d.

Uzi (=

In case d = 2, we write z,y in place of z!,z2. Otherwise, z is the vector
T =(z,...,z%).

Ezamples: (1) The Laplace equation

d
Au:= Z ugizi =0 (A is called the Laplace operator),

i=1
or, more generally, the Poisson equation
Au= f for a given function f:2 - R.

For example, the real and imaginary parts u and v of a holomorphic
function u: 2 — C (2 C C open) satisfy the Laplace equation. This
easily follows from the Cauchy-Riemann equations:
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Uz = Uy,

with z=z+1y
Uy = = Vg,

implies

Uzz + Uy = 0 = vz + vy,

The Cauchy-Riemann equations themselves represent a system of PDEs.
The Laplace equation also models many equilibrium states in physics,
and the Poisson equation is important in electrostatics.
(2) The heat equation:
Here, one coordinate ¢ is distinguished as the “time” coordinate, while
the remaining coordinates z',...,z¢ represent spatial variables. We con-
sider

u:2xR* >R, NopeninR?, R*:={tcR:t>0},
and pose the equation
d
uy = Au, where again Au:= Zu,a,i.

i=1

The heat equation models heat and other diffusion processes.
(3) The wave equation:
With the same notation as in (2), here we have the equation

Ut = Au.

It models wave and oscillation phenomena.
(4) The Korteweg—de Vries equation

Uy — 6uty + Ugzr =0

(notation as in (2), but with only one spatial coordinate z) models the
propagation of waves in shallow waters.
(5) The Monge-Ampére equation

2 _
UpzglUyy — Uz, = [,
or in higher dimensions

det (ugiz )i,j=1,...,d = f,

with a given function f, is used for finding surfaces (or hypersurfaces)
with prescribed curvature.



