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Preface

The great response to the publication of the book Classical and Modern Fourier
Analysis has been very gratifying. I am delighted that Springer has offered to publish
the second edition of this book in two volumes: Classical Fourier Analysis, 2nd
Edition, and Modern Fourier Analysis, 2nd Edition.

These volumes are mainly addressed to graduate students who wish to study
Fourier analysis. This first volume is intended to serve as a text for a one-semester
course in the subject. The prerequisite for understanding the material herein is satis-
factory completion of courses in measure theory, Lebesgue integration, and complex
variables.

The details included in the proofs make the exposition longer. Although it will
behoove many readers to skim through the more technical aspects of the presenta-
tion and concentrate on the flow of ideas, the fact that details are present will be
comforting to some. The exercises at the end of each section enrich the material
of the corresponding section and provide an opportunity to develop additional intu-
ition and deeper comprehension. The historical notes of each chapter are intended to
provide an account of past research but also to suggest directions for further investi-
gation. The appendix includes miscellaneous auxiliary material needed throughout
the text.

A web site for the book is maintained at

http://math.missouri.edu/~loukas/Fourier Analysis.html

I am solely responsible for any misprints, mistakes, and historical omissions in
this book. Please contact me directly (loukas@math.missouri.edu) if you have cor-
rections, comments, suggestions for improvements, or questions.

Columbia, Missourd, Loukas Grafakos
April 2008
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Chapter 1
L? Spaces and Interpolation

Many quantitative properties of functions are expressed in terms of their integra-
bility to a power. For this reason it is desirable to acquire a good understanding
of spaces of functions whose modulus to a power p is integrable. These are called
Lebesgue spaces and are denoted by L?. Although an in-depth study of Lebesgue
spaces falls outside the scope of this book, it seems appropriate to devote a chapter
to reviewing some of their fundamental properties.

The emphasis of this review is basic interpolation between Lebesgue spaces.
Many problems in Fourier analysis concern boundedness of operators on Lebesgue
spaces, and interpolation provides a framework that often simplifies this study. For
instance, in order to show that a linear operator maps L? to itself forall 1 < p < oo,
it is sufficient to show that it maps the (smaller) Lorentz space L”! into the (larger)
Lorentz space LP*™ for the same range of p’s. Moreover, some further reductions can
be made in terms of the Lorentz space L”!. This and other considerations indicate
that interpolation is a powerful tool in the study of boundedness of operators.

Although we are mainly concerned with L? subspaces of Euclidean spaces, we
discuss in this chapter LP spaces of arbitrary measure spaces, since they represent a
useful general setting. Many results in the text require working with general mea-
sures instead of Lebesgue measure.

1.1 L? and Weak L?

Let X be a measure space and let 4 be a positive, not necessarily finite, measure
on X. For 0 < p < oo, LP(X, 1) denotes the set of all complex-valued y-measurable
functions on X whose modulus to the pth power is integrable. L=(X, ) is the set
of all complex-valued u-measurable functions f on X such that for some B > 0, the
set {x : | f(x)| > B} has pt-measure zero. Two functions in LP(X, i) are considered
equal if they are equal p-almost everywhere. The notation LP(R") is reserved for
the space LP(R", |- |), where | - | denotes n-dimensional Lebesgue measure. Lebesgue
measure on R" is also denoted by dx. Within context and in the absence of ambi-

L. Grafakos, Classical Fourier Analysis, Second Edition, 1
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2 1 L? Spaces and Interpolation

guity, LP(X, 1) is simply written as L”. The space LP(Z) equipped with counting
measure is denoted by ¢(Z) or simply ¢7,
For 0 < p < o0, we define the L? quasinorm of a function f by

s = ( [ 1707 dnte))” AL
and for p = e by

”f“L"(X,p) =ess.sup|f| =inf{B>0: pu({x: |f(x)|>B})=0}. (112)

It is well known that Minkowski’s (or the triangle) inequality

“f+g”U’(X,p) < "f“l}’(X,p) + "g”LP(X,p) (1.1.3)

holds for all f, g in LP = LP(X,u), whenever 1 < p < . Since in addition
A1 1o(x ey = O implies that f = 0 (-a.e.), the LP spaces are normed linear spaces
for 1 £ p <o For0< p < 1, inequality (1.1.3) is reversed when f, g > 0. However,
the following substitute of (1.1.3) holds:

||f+g||u(x,p) < 2(l_p)/p(||f”u(x,p) + “g”LP(X,p)) ) (114

and thus LP(X, ) is a quasinormed linear space. See also Exercise 1.1.5. For all
0 < p < oo, it can be shown that every Cauchy sequence in LP(X, 1) is convergent,
and hence the spaces L”(X,u) are complete. For the case 0 < p < 1 we refer to
Exercise 1.1.8. Therefore, the LP spaces are Banach spaces for 1 < p < e and quasi-
Banach spaces for 0 < p < 1. For any p € (0,%2) \ {1} we use the notation p’ = J25.

Moreover, we set 1’ = o and o' = 1, so that p” = p for all p € (0,c0]. Holder’s
inequality says that for all p € [1, 0] and all measurable functions f,g on (X, 4) we

have
178l < 1110 llelt o -

It is a well-known fact that the dual (LP)* of L” is isometric to L forall 1 < p < .
Furthermore, the L? norm of a function can be obtained via duality when 1 < p < oo
17l = sop

as follows:
/ fgdui-
gl =117

For the endpoint cases p = 1, p = o, see Exercise 1.4.12(a), (b).

1.1.1 The Distribution Function

Definition 1.1.1. For f a measurable function on X, the distribution function of f is
the function dy defined on [0, <) as follows:



