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Foreword

I am honored by Professor Sharpe’s request to write a forward to his beau-
tiful book.

In his preface he asks the innocent question, “Why is differential ge-
ometry the study of a connection on a principal bundle?” The answer is
of course very simple; because Euclidean geometry studies a connection
on a principal bundle, and all geometries are in a sense generalizations of
Euclidean geometry.

In fact, let E™ be the Euclidean space of n dimensions. We call an or-
thonormal frame z, €;,...,e, (n+1 vectors), where z is the position vector
and e; have the scalar products

(ei,ej)=6,'_.,-, ISi,an.

Then the space of all orthonormal frames is a principal fiber bundle with
group O(n) and base space £, the projection being defined by mapping
T, e1,...,en to . The equations

d€i= Z Wii€j, 151:571,
1<i<n

define the Maurer-Cartan forms w;;, with
wij +wj; =0, 1<14,7<n.
They satisfy the Maurer~Cartan equations

dwj = D wikAwg, 1<ij<n
1<k<n



vi Foreword

This is Euclidean geometry by moving frames. The w;; define the paral-
lelism or connection. The Maurer—Cartan equations say that the connection
is flat. This formulation has a great generalization.

As in all disciplines, the development of differential geometry is tortuous.
The basic notion is that of a manifold. This is a space whose coordinates
are defined up to some transformation and have no intrinsic meaning. The
notion is original, bold, and powerful. Naturally, it took some time for the
concept to be absorbed and the technology to be developed. For example,
the great mathematician Jacques Hadamard “feit insuperable difficulty . ..
in mastering more than a rather elementary and superficial knowledge of
the theory of Lie groups,” a notion based on that of a manifold [1]. Also,
it took Einstein seven years to pass from his special relativity in 1908 to
his general relativity in 1915. He explained the long delay in the following
words: “Why were another seven years required for the construction of the
general theory of relativity? The main reason lies in the fact that it is not so
easy to free oneself from the idea that coordinates must have an immediate
metrical meaning.” (2]

On the technology side the breakthrough was achieved by the tensor
analysis of Ricci calculus. The central theme was Riemannian geometry,
which Riemann formulated in 1854. Its fundamental problem is the “form
problem”: To decide when two Riemannian metrics differ by a change in
coordinates. This problem was solved by E. Christoffel and R. Lipschitz
in 1870. Christoffel’s solution introduces a covariant differentiation, which
could be given an elegant geometrical setting through the parallelism of
Levi-Civita. Tensor analysis is extremely effective and has dominated dif-
ferential geometry for a century.

Another technical tool, which has not quite received the recognition it
deserves, is the exterior differential calculus of Elie Cartan. This was intro-
duced by Cartan in 1922, following the work of Frobenius and Darboux. All
the exterior differential forms on a manifold form a ring. It depends only
on the differentiable structure of the manifold and not on any additional
structure such as a Riemannian metric or an affine connection. Topolog-
ically it leads to the de Rham theory. Less known is its effectiveness in
treating local problems.

A fundamental question is the equivalence problem for G-structures:
Given, on an n-dimensional manifold with coordinates u', a set of linear
differential forms w*, a similar set w*/ with coordinates u*/, and a subgroup
G C Gl{n,R), determine the conditions under which there exist functions

w =ut(ut, . ), 1<4,j<n,
such that after substitution the w*? differ from the w’ by a transformation
of G. The form problem in Riemannian geometry is the case G = O(n).
The solution of the form problem by Cartan’s method of equivalence
leads automatically to the tensor analysis. Thus, the method of equiva-
lence is more general. In the case G = O(n), this leads to the Levi-Civita



Foreword vii

parallelism and the Riemannian geometry. In this way Euclidean geome-
try generalizes to Riemannian geometry. For a general G, the solution of
the equivalence problem is not always easy (cf. the Preface), although it is
proved that it can always be achieved in a finite number of steps. Philo-
sophically nice problems have nice answers.

Klein geometry can be developed through the Maurer-Cartan equations.
The generalization of the above discussion, from O(n) to G, gives Cartan’s
generalized spaces, essentially a connection in a principal bundle.

A fundamental problem is the relation of the local geometry with the
global properties of the spaces in question. Such a result is the so-called
Chern—Weil theorem that the characteristic classes can be represented by
differential forms constructed explicitly from the curvature. The simplest
result is the Gauss—Bonnet formula.

[ wish to take this occasion to mention some recent developments on
Finsler geometry [3]. This is the geometry of a very simple integral and
was discussed in problem 23 of Hilbert’s Paris address in 1900. By a proper
interpretation of the analytical results, Finsler geometry now assumes a
very simple form showing it to be a family of geometries quite analogous
to the Riemannian case.

Differential geometry offers an open vista of manifolds with structures,
finite or infinite dimensional. There are also simple and difficult low-dimen-
sional problems, of the garden variety. If one switches between the two, life
is indeed very enjoyable.

It is a great mystery that the infinitesimal calculus is a source of such
depth and beauty.

References

(1) J. Hadamard, Psychology of Invention in the Mathematical Field,
Princeton University Press, Princeton, 1945, p. 115.

[2) A. Einstein, Autobiographical Notes, in Albert Einstein: Philosopher
Scientists, p. 67, 2nd ed., 1949, in vol. 7 of the series The Library of
Living Philosophers, Evanston, IL, edited by P.A. Schilpp.

(3] D. Bao and S.S. Chern, On a notable connection in Finsler geometry,
Houston J. Math. 19 (1993), 135-180.

S.S. Chern
Mathematical Sciences Research Institute
Berkeley, CA 94720, USA



Note on the Second Printing

This printing corrects many simple errata, but it does not deal with two
issues, which will be treated in detail in a possible second edition of this
book. For now I merely wish to indicate how they may be dealt with.

Part B of the structure theorem 2.8.3 is false as it stands. [t becomes true
if the hypothesis (iii) is replaced by the condition ‘each leaf is compact’. I
note that this result is never appealed to anywhere in the book.

In the proof of the characterization of Lie groups (Theorem 3.8.7) the
maps i: M x M — M and v M — M on pages 131 and 133 are constructed
by appealing to the fundamental theorem. But the target M is not as yet a
Lie group so the fundamental theorem does not apply. What is needed is a
version of the fundamental theorem for maps f: N — M, where N is simply
connected and M is a manifold satisfying the hypotheses of Theorem 3.8.7.
1 do not know how to prove such a result using the definition of a complete
1-form given on page 129. The remedy is to replace this definition by:

Definition 8.3. Let V be a vector space and let w be a V-valued
1-form on the smooth manifold M. Assume that wy: T\yM — V
is an isomorphism for every m € M. We say that w is complete
if the vector field {w~!(f(t)), &) on M x R is complete for every
smooth function f:R — V.

The Maurer-Cartan form of a Lie group does indeed satisfy this condition,
and with this stronger notion of completeness, Theorem 3.8.7 is true.

I would like to express my gratitude to Robert Solovay and Anthony
Blaom for bringing these two issues (respectively) to my attention.

Richard Sharpe
Toronto. Canada
March 2. 2000



Preface

This book is a study of an aspect of Elie Cartan’s contribution to the
question “What is geometry?”

In the last century two great generalizations of Euclidean geometry ap-
peared. The first was the discovery of the non-Euclidean geometries. These
were organized into a coherent whole by Felix Klein, who recognized them
as various examples of coset spaces G/ H of Lie groups. In this book we refer
to these latter as Klein geometries. The second generalization was Georg
Riemann’s discovery of what we now call Riemannian geometry. These two
theories seemed largely incompatible with one other.!

In the early 1920s Elie Cartan, one of the pioneers of the theory of
Lie groups, found that it was possible to obtain a common generalization
of these theories, which he called espaces généralizés and we call Cartan
geometries (see diagram).

Euclidean generalization  Klein
Geometry Geometries

generali- generali-
zation zation

Riemannian generalizaion  Cartan
Geometry — > Geomerries

'The only relationship was the “accident” that some of the non-Euclidean
geometries could be regarded as special cases of Riemannian geometries.
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Looking at this diagram vertically, we can say that just as a Riemannian
geometry may be regarded, locally, as modeled on Euclidean space but
made “lumpy” by the introduction of curvature, so a Cartan geometry
may be regarded, locally, as modeled on one of the Klein geometries but
made “lumpy” by the introduction of a curvature appropriate to the model
in question. Looking at the same diagram horizontally, a Cartan geometry
may be regarded as a non-Euclidean analog of Riemannian geometry.

Cartan actually gave the first example of a Cartan geometry more than
a decade earlier, in the remarkable tour de force [E. Cartan, 1910]. In that
paper he considered the case of a two-dimensional distribution on a five-
dimensional manifold. He showed that such a distribution determined, and
was determined by, a Cartan geometry modeled on the homogeneous space
G2/H, where H is a certain nine-dimensional subgroup of the fourteen-
dimensional exceptional Lie group Gz. This process of associating a Car-
tan geometry to a raw geometric entity (the distribution) is an example
of “solving the equivalence problem” for the entity in question. Although
the solution of an equivalence problem is not always a Cartan geometry,
in many important cases it is. When it is, the invariants of the geometry
(curvature, etc.) are a priori invariants of the raw geometric entity. We rec-
ommend [R.B. Gardner, 1989] for an account of the method of equivalence.

To be a little more precise, a Cartan geometry on M consists of a pair
(P,w), where P is a principal bundle H — P — M and w, the Cartan
connection, is a differential form on P. The bundle generalizes the bundle
H — G — G/H associated to the Klein setting, and the form w generalizes
the Maurer-Cartan form wg on the Lie group G. In fact, the curvature of
the Cartan geometry, defined as dw + % [w, w], is the complete local obstruc-
tion to P being a Lie group.

One reason for the power of Cartan’s method comes from the fact that
these new geometries maintain the same intimate relation with Lie groups
that one sees in the case of homogeneous spaces. This means, for example,
that constructions in the theory of homogeneous spaces often generalize
in a simple manner to the general “curved” case of Cartan geometries.
It also means that the differential forms that appear are always related
to components of the Maurer-Cartan form of the Lie group, a context in
which their significance remains clear.

In the particular case of a Riemannian manifold M, Cartan’s point of
view offered a new and profound vantage point that is largely responsible
for the modern insistence on “doing differential geometry on the bundle P
of orthonormal frames over M.”

The history of the study of Cartan geometries is somewhat troubled. First
is the difficulty Cartan faced in trying to express notions for which there was
no truly suitable language.? Next is the widely noted difficulty in reading

2This difficulty was resolved with the introduction of the notion of a principal
bundle and of vector-valued forms on such a bundle.
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Cartan.® In his paper [C. Ehresmann, 1950] Charles Ehresmann gave for
the first time a rigorous global definition of a Cartan connection as a special
case of a more general notion now called an Ehresmann connection (or more
simply, a connection). For various reasons® the Ehresmann definition was
taken as the definitive one, and Cartan’s original notion went into a more
or less total eclipse for a long time. The beautiful geometrical origin and
insight connected with Cartan’s view were, for many, simply lost. In short,
although the Ehresmann definition gives us a good notion, it hides the real
story about why it is so good. In this connection, the following quotation
is interesting [S.S. Chern, 1979}:

The physicist C.N. Yang wrote [C.N. Yang, 1977]): “That non-
abelian gauge fields are conceptually identical to ideas in the
beautiful theory of fibre bundles, developed by mathematicians
without reference to the physical world, was a great marvel to
me.” In 1975 he mentioned to me: “This is both thrilling and
puzzling, since you mathematicians dreamed up these concepts
out of nowhere.”

Far from arising “out of nowhere,” the simple and compelling geometric
origin of a connection on a principal bundle is that it is a generalization
of the Maurer—Cartan form. Moreover, a study of the Cartan connection
itself can illuminate and unify many aspects of differential geometry.

Novelties

Aside from the fact that one cannot find a fully developed, modern ex-
position of Cartan connections elsewhere, what is new or different in this
book?

New Treatment

This book is written at a level that can be understood by a first- or second-
year graduate student. In particular, we include the relevant theory of man-
ifolds, distributions and Lie groups. For us, a manifold is, by definition, a

3To paraphrase Robert Bryant, “You read the introduction to a paper of
Cartan and you understand nothing. Then you read the rest of the paper and
still you understand nothing. Then you go back and read the introduction again
and there begins to be the faint glimmer of something very interesting.”

At that stage it was easier to read Ehresmann than Cartan. There was also
the attraction of a more general and global notion.
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locally Euclidean, paracompact Hausdorff space. This is the same as a lo-
cally Euclidean Hausdorff space each of whose components has a countable
basis.> In particular, Lie groups are defined to be manifolds in this sense.
The result of Yamabe and Kuranishi ([H. Yamabe, 1950)) that a connected
subgroup of a Lie group is a Lie subgroup implies that any subgroup of a
Lie group is a Lie group in the present sense. The discussion of subman-
ifolds given in Chapter 1 is broad enough to include these subgroups as
submanifolds.

In our coverage of bundle theory, we emphasize the abstract principal
bundles rather than bundles of frames.® Of course, these two views are re-
ally equivalent. In the case of the “first-order” geometries, the equivalence is
quite simple. However, in the case of “higher-order” geometries, the choice
of the higher-order frames usually seems to be decided on a rather ad
hoc basis and can be complicated. Here the bundle approach gives a real
advantage, and the right choice of frames becomes clear (if needed) once
the bundle is understood. Another important advantage of working with
the bundles themselves is that they give a common language, facilitating
comparison between geometries and emphasizing the relation to the model
space. In this sense, comparing Cartan geometries is like comparing Klein
geometries.

Chapter 3 contains a complete and economical development of the Lie
group—Lie algebra correspondence based on the fundamental theorem of
non-abelian calculus. One of the novelties here is the characterization of
a Lie group as a manifold equipped with a Lie algebra-valued form on it
satisfying certain properties. This characterization prepares the reader for
the generalization to Cartan geometries in Chapter 5.

Finally, in Appendix B we explain how one manifold may roll with-
out slipping or twisting on another in Euclidean space. We also show how
this notion yields a differential system that contains both the Levi-Civita
connection and the Ehresmann connection on the normal bundle for a sub-
manifold of Euclidean space.

New Results

Let us move on to some results we believe are new. In Chapter 4 we in-
troduce the fundamental property of Klein geometries characterizing the
kerne] of such a geometry. This result is used in Chapter 5 in an essential
way to show the equivalence of the base and bundle definitions of Cartan
geometries in the effective case. In Chapter 5 we introduce and classify
Cartan space forms. These geometries generalize the classical Riemannian

$The usual definition requires a manifold to have a countable basis (cf., e.g.,
[Boothby, W. 1986, p. 6]).

®In much the same way, one might emphasize an abstract Lie group rather
than a matrix group realizing it.
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space forms.” One important ingredient of this classification is the property
{apparently new) of a Cartan geometry called “geometric orientability.”
Another is the notion of “model mutation.” Finally, in Chapter 7 we give
a classification of the submanifolds of a Mobius geometry. This classifica-
tion is more general than that of [A. Fialkow, 1944] in that ours allows the
presence of umbilic points.

Prerequisites and Conventions

This book assumes very few prerequisites. The reader needs to be familiar
with some basic ideas of group theory, including the notion of a group
acting on a set. Results from the calculus of several variables, point set
topology, and the theory of covering spaces are used in various places, and
the long, exact sequence of homotopy theory is used once (at the end of
Chapter 5). Aside from this, most of the material is developed ab initio.
However, the reader is invited to shoulder some of the burden of the work
in that essential use is made of a few of the exercises. These exercises are
denoted by an asterisk to the right of the exercise number.

The numbering follows a single sequence throughout the book, with all
items (definitions, theorems, figures, etc.) in a single stream. Thus 4.3.2
refers to Chapter 4, Section 3, item 2. For references to items occurring in
the same chapter, we omit the chapter number, so that in Chapter 4, 4.3.2
becomes 3.2.

We use the following dictionary of symbols to denote the ends of various
items:

symbol end of

& definition
a exercise

[ ] proof

2 example

Although it will often be convenient for us to write column vectors as
row vectors, the reader should remember that all vectors are in fact column
vectors.

"In fact, this notion is general enough to immediately allow a description of
general symmetric spaces.
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Limitations

The reader will find no mention here of some basic topics in differential
geometry, such as Stokes’ theorem, characteristic classes, and complex ge-
ometries. Also, our approach to Lie theory is “elementary” in that we do
not discuss or use the classification theory of Lie groups, with its attendant
study of roots, weights, and representations.

Originally, we had wished to include more than the three examples of
Cartan geometries studied here; but in the end, the pressures of time, space,
and energy limited this impulse. The three geometries we do study are not
developed in complete analogy to each other. For example, the discussion
of immersed curves in a Mabius geometry in terms of the normal forms
given in Chapter 7 does of course have a Riemannian analog, but that is
not studied in this book. And one may study subgeometries of projective
geometries just as one studies subgeometries of Riemannian and Mdobius
geometries, but we do not do so here. We have also resisted the impulse
to make a “dictionary” translating among the various versions of Cartan’s
view, Ehresmann’s view,? and the view expressed in [L.P. Eisenhart, 1964].
In the end, however, for those who are interested in it, it should be abun-
dantly clear how Cartan’s view does illuminate the others.

Some Personal Remarks

An author often writes a book in order to sort out his or her own under-
standing of the subject. This is the circumstance in the present case. When
I was an undergraduate, differential geometry appeared to me to be a study
of curvatures of curves and surfaces in R3. As a graduate student I learned
that it is the study of a connection on a principal bundle. I wondered what
had become of the curves and surfaces, and I studied topology instead.
The reawakening of my interest in this subject began in 1987 when Tom
Willmore very kindly wrote me a note thanking me for a preprint and men-
tioning his great interest in what is known as the Willmore conjecture (cf.
7.6). This led me once again to look at principal bundles and connections.
In particular, I wondered whether there was an intrinsically defined Ehres-
mann connection on a surface in S that was invariant under the group
of Mébius transformations of S°. It turns out there is no such connection.
However, after calculating normal forms for surfaces in the Mébius sphere
93 (cf. [G. Cairns, R. Sharpe. and L. Webb, 1994}), it became clear to me
that there must be some other kind of invariantly defined structure inher-
ited on the surface from its embedding in S%. (In Chapter 7 it is shown

8See, however, the discussion in Appendix A dealing with the relationship
between Cartan and Ehresmann connections.
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that a Cartan connection is defined in this situation, and, in fact, Cartan
also knew this [E. Cartan, 1923).)

During this time it began to seem strange to me that Ehresmann connec-
tions play such a prominent role in modern differential geometry. In some
cases, such as the Levi-Civita connection, the connection is determined
by the geometry. In many cases, however, one makes use of an arbitrary
connection that one proves to exist by a general technique. This is the ap-
propriate point of view for the construction of the characteristic classes of
Chern and Pontryagin. There one may use any connection, since the aim
is to obtain topological invariants for which the particular choice of con-
nection does not matter. But these considerations seem to be at their base
topological rather than differential geometric. My innocent question, left
over from my undergraduate days, was “Why is differential geometry the
study of a connection on a principal bundle?” And | began, rather imper-
tinently, to ask this question at every opportunity, usually picking on some
unsuspecting differential geometer who did not know me very well.

During one of these sessions, Min Qo remarked that Elie Cartan had
considered connections with values in a Lie algebra larger than that of the
fiber.? Later I read, and translated,!” Cartan’s book [E. Cartan, 1935]. I
browsed through Cartan’s collected works and through those of his suc-
cessors and interpreters. It became clear to me that Cartan had a subtle
and really wonderful idea, which gives a fully satisfying explanation for the
modern, and approximately true, notion that differential geometry is the
study of an Ehresmann connection on a principal bundle. There seems to be
no treatment of these things in the standard texts on differential geometry.
In the few books where the Cartan connections are mentioned at all (e.g.,
(J. Dieudonné 1974}, [W.A. Poor, 1981], and [M. Spivak, 1979]), they make
only a brief appearance, perhaps in the exercises or toward the end of the
book, and one is left with the impression that the notion is only a quaint
curiosity left over from bygone days. Six years ago I began to scribble some
notes about these things and to talk about them; after a number of months
had passed, I realized I was writing a book on the subject.

I would like to thank everyone who has had an influence on this book.
In addition to those mentioned above, I am grateful to Bernard Kamte,
Joe Repka, Qunfeng Yang, and my wife, Mary, for their comments on por-
tions of the manuscript. My thanks go to all the staff at Springer-Verlag,

%See (E. Ruh, 1993] for a brief recent overview of Cartan connections and some
of their applications.

'°A copy of my translation, which is only a rough draft, can be found in the
Mathematics Library at the University of Toronto.



