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Preface

Topology began with the investigation of certain questions in geometry and
it was an area of mathematics concerned with properties that are preserved
under continuous deformations of objects, such as deformations that involve
stretching, but no tearing or gluing. In general, we could consider these concepts
in topology such as continuity and convergence. For algebra, we all know that an
algebraic structure on a set always considers the rules of operations and relations
on itself. Among all these operators, groups and semigroups are very popular
in mathematics. Together with geometry, analysis, topology, combinatorics and
number theory, algebra is one of the main branches of pure mathematics. With
the development of modern mathematics, sometimes mathematicians are asked
to consider the topology and algebra structure together such as when studying
functional analysis, dynamical systems, representation theory and others. In the
20th century many topologists and algebraists have contributed to topological
algebra. Some outstanding mathematicians were involved such as Dieudonné J,
Pontryagin L S, Weil A and Weyl H. An important topic of topological algebra
is the interplay between topological and algebraic structures on the same set;
in particular, the way in which otherwise inequivalent topological properties are
forced to become equivalent by the presence of a compatible algebraic structure,
and vice versa. For example, if the underlying topological space of a topological
group satisfies the Tp separation axiom, then it is automatically a Hausdorff
space (and even completely regular). Clearly, the answer to the question how the
relationship between topological properties depends on the underlying algebraic
structure should strongly depend on the way the algebraic structure is related to
the topology. The weaker the restrictions on the connection between topology
and algebraic structure are, the larger is the class of objects included in the
theory. Because of this, even when our main interest is in topological groups,
it is natural to consider more general objects such as paratopological groups
and semitopological groups which are more generalized than topological groups.
Examples we encounter in such a larger class of objects help us to understand
the beautiful properties of topological groups better.

Our main concern here will be paratopological and semitopological groups.
The thorough topological study in paratopological and semitopological groups
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began about twenty years ago ( [24-26] [80]). Arhangel’skii A V , Tkachenko M
published their book Topological Groups and Related Structures in 2008. This
book summed up many results established in topology algebra and posed a lot
of open problems which pointed out the direction in studying paratopological
and semitopological groups. In comparison with topolgical groups, the theory of
paratopological and semitopological groups is quite different. Many concepts in
the theory of paratopological and semitopological groups have no analogues in
topological groups at all. For example, the closure of a subgroup might not be a-
gain a subgroup and this is false even for first countable Abelian paratopological
groups ( [17], Example 1.4.17). The most famous example of a paratopologi-
cal group, the Sorgenfrey line, shows that first countable (hereditarily) normal
paratopological groups need not be metrizable. Now the theory of paratopolog-
ical and semitopological groups is a dynamically developing branch of Mathe-
matics with its own technique.

In 2009, Shen Rongxin and Lin Shou published the paper A note on gen-
eralized metrizable properties in topological groups ( [90]) which was the first
paper in this field in China. In the past few years, topologists Arhangel’skii A
V, Comfort W W, van Mill J and Tkachenko M came to China to have academic
communications in succession. Lin Fucai’s book Topology algebra and generalized
metric spaces( [55]) almost covered all area of topology algebra, especially the
excellent work in China before 2013. This book collects the most recently work
of the authors in paratopological and semitopological groups.

We expect readers to know the basic facts from general topology and fopology
algebra. The standard reference books are [17] [35] [41] [65].

Thank the support from the NSFC (No. 11271262), the Fundamental Re-
search Funds for the Central Universities (N130323014, N120323013), the Natu-
ral Science Foundation of Hebei Province (A2014501101, A2014501040), Guang-
dong Province Young Creative Talents Project (No. 2014KQNCX161) and the
Science Foundation for Young Teachers of Wuyi University (No. 2013zk03). We
are also grateful to Mrs. Shi Yuling and other editors of Northeastern University
Press for their diligent work.

Li Piyu, Xie Lihong, Mou Lei and Xue Changtao
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Chapter 1

Introduction

Given an object with an algebraic structure, say, a group, and a topology
on it,"one can require distinct types of relation between them. An important
topic of topological algebra is the interplay between topological and algebraic
structures on the same set. In this chapter, we will introduce some definitions
in topology and topological algebra and some related simple properties will be
given.

We use N, Z, Q and R to denote the natural numbers, the integers, the rational
numbers, and the real numbers,respectively. The symbols w and w; denote the
first infinite ordinal and uncountable ordinal, respectively.

Below ¢(X), d(X), w(X), nw(X), I(X), and k(X) denote the cellularity,
density, weight, network weight, Lindel6f degree, and compact-covering number
of a space X defined, respectively, as follows:

Cellularity: ¢(X) = sup {|U| : U is a disjoint family of open subsets of X} +

Density: d(X) =min {|S|: S C X and § = X} + w.

Weight: w(X) = min {|/] : U is a base for X} + w.

Network weight: nw(X) = min {|U| : U is a network for X} + w.

Lindelof degree: [(X) = min {\ € Card : for every open cover V of X
there is a subfamily U C V such that || < Aand JU = X} + w.

Compact-covering number: k(X ) = min {\ € Card : i is a family of compact
subsets of X such that /| < Aand YU = X} +w.

A collection of nonempty open sets U of X is called a m-base if for every

1
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nonempty open set O, there exists an U € U such that U C O. A w-base of
a space at a point z of X is a family v of non-empty open subsets of X such
that every open neighborhood of z contains at least one element of 7. Put
7x(z, X) = min{|y| : vis a m-base at z} + w. Then the m-character of X is
Ty (X) = sup{my(z, X) : ¢ € X}.

A semitopological group is a group with a topology such that the multiplica-
tion in the group is separately continuous. If G is a semitopological group and
the inverse operation of G is continuous, then G is called a quasitopological group.
A paratopological group is a group with a topology such that the multiplication
is jointly continuous. If G is a paratopological group and the inverse operation
of G is continuous, then G is called a topological group.

It is clear from the definitions that

paratopological group

/'

topological group semitopological group
quasitopological group

For a semitopological group G with identity e we will consider the following
cardinal functions:
Character: x(G) = min {|B| : Bis a neighborhood base at e of G} + w.

Pseudocharacter: 1(G) = min {|U| : U is a family of open subsets of G such
that U = {e}} + w.

Example 1.1.1. Let 7 be the topology on R with the base B consisting of the
sets [a,b) = {z € R:a <z < b}, where a,b € R and a < b. With the topology
and the natural addition, R is a paratopological group. However, (R, ) is not
a topological group since the inverse operation z — —z is not continuous. This

paratopological group is called Sorgenfrey line.

Example 1.1.2. Let G = (R?, +) be the group with the usual addition. Endow
G with the topology which has a base {U((s,t),¢,0) : (s,t) € G,e > 0,4 > 0},
where U((s,t),,6) = {(s,t)} U{(s,t) : 0 < |s — §'| < &,|(t —t)/(s —s)| < 6}
( [41], Example 9.10). It is easy to see that G is a regular quasitopological group.
However, G is not a topological group since (s1,t1) + (s2,t2) — (81 + 82,1 + t2)

2



Chapter 1. Introduction

is not continuous.

Let G be a group. For a fixed element a € G, the mapping * — az and
x — za of G onto itself are called the left and right translations of a on G, and
are denoted by A, and g,, respectively.

Proposition 1.1.3. Let G be a semitopological group and g be any element of
G. Then:

a) the right translation g, of G by g is a homeomorphism of the space G onto
itself;

b) for any base B, of the space G at e, the family By = {Ug : U € B} is a
base of G at g.

Proof. Clearly, a) implies b). To prove a), we just observe that, in a semitopo-
logical group, every right translation g, is a continuous bijection. Since g4 0 o !
is the identity mapping, it follows that the inverse of g, is also continuous, that

is, o4 is a homeomorphism of G onto itself. O

With the same method, we can prove that the corresponding result for the
left translation A\, of G.

Recall that a topological space X is said to be homogeneous if for each € X
and each y € X, there exists a homeomorphism f of the space X onto itself such

that f(z) = y. From Proposition 1 we easily obtain the next result:

Corollary 1.1.4. Every semitopological group is a homogeneous space.

Proof. Let G be a semitopological group. Take any elements z and y in G, and
put z = z~1y. Then p,(z) = 2z = 2z~ 'y = y. Since, by Proposition 1, g, is a
homeomorphism, the space G is homogeneous. O

It is well known that every T topological group is Tychonoff. The influence of
separation axioms on the topology of a paratopological group is a considerably
more subtle issue than it appears in the case of topological groups. It is an
old question whether every regular paratopological group is Tychonoff. The
examples below show that neither of the implications

To = T1 = T5 = regular
is valid in paratopological groups, independently of their algebraic structure.

3
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Example 1.1.5. T % T7. Let R be the additive group of real numbers endowed
with the topology 79 = {[z,+00) : € R}. Then (R, 1) is a first-countable Tj
paratopological group which fails to be a 7} space.

Example 1.1.6. 77 # T5. Let Z be the additive group of integers. Consider the
topology 71 = {z+ [y, +0) : ,y € Z} on Z. Then (Z,7;) is a T} paratopological
group in which every two basic open sets have a nonempty intersection. Hence
the space (Z, 1) is not Hausdorff.

Example 1.1.7. T, # regular. Let R? be the additive group and By =
{{(0,00)} U {{z,y) € R? : |z| < 1/n,0 < y < 1/n} a local base at the zero
element (0,0). Consider the topology 7 generated by the base B = {(z,y) + B :
z,y € R and B € By}. It is clear that (R? 73) is a first-countable Hausdorff
paratopological group which is not regular.

Next, we will introduce some concepts in the theory of generalized metric
spaces.

Moore space theory has greatly influenced the theory of generalized metric
spaces, so we will often refer to Moore spaces, and relate them to other classes
of generalized metric spaces. Let {U, : n € w} be a sequence of open subsets of
a space X. Recall that, for every z € X and n, st(z,U,) = J{U €Uy, : z € U}.

A sequence of open covers {Uy, : n € w} of a space X is called a development,
if for every z € X, the sequence {st(z,U,) : n € w} is a base at . A space
with a development is called a developable space. A Moore space is a regular
developable space.

A space X is quasi-developable if there exists a sequence {U, : n € w} of
families of open subsets of X such that for each z € X, {st(z,U,) : n € w} is
a base at x. This definition is the same as that of developable spaces, except
that the (U,)’s do not have to cover the space. It was shown that a space X
is developable if and only if X is perfect (=closed sets are Gs-sets) and quasi-
developable ( [41], Theorem 8.6).

The Gs-diagonal property is a simple property which appears as a factor in
many theorems characterizing metrizable or developable spaces. A space X has
a Gs-diagonal if the set A = {(z,z) € X x X : z € X} is a Gs-subset in X x X.
The following characterization of spaces having a Gs-diagonal is very useful for

relating them to other classes of generalized metric spaces. It shows that the G-

4
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diagonal property is equivalent to a weak form of developability ( [41], Theorem
2.2). A space X has a Gs-diagonal if and only if there exists a sequence (G,,) of
open covers of X such that for each z,y € X with z # y, there exists n € w with
y ¢ st(z,Gy) (equivalently, for each z € X,z = st(z,Gy)).

A space X is said to have a regular Gs-diagonal if the diagonal A = {(z,z) :
x € X} can be represented as the intersection of the closures of a countable
family of open neighborhoods of A in X x X. Every space with a regular Gs-
diagonal is Hausdorff. Indeed, according to Zenor ( [110]), a space X has a
regular Gs-diagonal if and only if there exists a sequence {V, : n € w} of open
covers of X with the following property:

For any two distinct points z and y in X, there are open neighborhoods O,
and Oy of z and y, respectively, and k € w such that no element of V intersects
both O; and O,.

A space X has a Gj}-diagonal if there exists a sequence (G,) of open covers
such that for each z € X, {z} =, st(z, Gn).

Clearly a space has a regular Gs-diagonal implies that it has a G}-diagonal
and a space has a Gj-diagonal implies that it has a Gs-diagonal.

Definition 1.1.8. ( [3]) A Tychonoff space X is a p-space if there exists a
sequence {%, : n € w} of families of open subsets of the Stone-Cech compactifi-
cation X such that

a) each %, covers X for each n € w;

b) MNpew st(z, %) C X for each z € X, where st(z,%,) =\ U{U € %. : z €
U}.

The following is an internal characterization of p-spaces.
Theorem 1.1.9. ( [27]) A space X is a p-space if and only if there exists a
sequence (G,) of open covers of X satisfying the following condition: If for each
n, z € G € G, then

(i) N,, Gn is compact;

(i) {Ni<n Gi : 7 € w} is an outer network for the set (), Gy, i.e., every open

set containing (), G contains some ﬂign G;.

Proof. Necessity. Let X be a p-space and U, a sequence of open covers of X
satisfying a) and b) in Definition 1. Then there exists a sequence {G,, : n € w} of
open covers of X satisfying: For each n € w and G € G, there exists U € U,, such

5
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that clgx (G) C U. We show that {G,, : n € w} is a sequence of open covers of X
satisfying the conditions (i) and (ii). For z € X and the sequence {G, : n € w}
of open subsets in X with z € G, € G, put Cz =), Gr. Then

(i) Cy is compact, since [, (clgxGn) € (e, St(z,Un) € X and C; =
ﬂnEw(X N Clngn) - ﬂnew(ClﬂXGn)'

(ii) Let C; C G € 7(X). Take U € 7(BX) such that G = U N X. Then
{UIN{BX \clgxGrn} is an open cover of 3X. Then there exists k € w such that
Mn<k clpxGn € U. It implies that (), . G, C G which shows that {
n € w} is an outer network for the set Cj.

isn G; :

Sufficiency. Let {G, : n € w} be a sequence of open covers of X satisfying
the conditions (i) and (ii). Expand {G, : n € w} to U, = {Ug : G € G},
where Ug is open in X and Ug N X = G. Thus {G, : n € w} covers X. Let
z € X. Assume that there exist y € (), st(z,Un) \ X. Then there exists a
sequence {U, : n € w} of open subset in SX such that {z,y} C U, € U,. Since
MNpew Un N X is compact in X, there exists U € 7(8X) and k € w such that

Nack UnNX CU Cclpx € BX \ {y}-

Put W = (N,<x Un) N (BX \ clpxU). Clearly, WNX = 2. But y € W and X
is dense in SX, a contradiction. a

A completely regular space X is Cech-complete if X is a Gs-subset in some
compactification of X.



Chapter 2

Generalized metrizable
properties and cardinal
invariants in paratopological

and semitopological groups

In this chapter, we consider the generalized metrizable properties on paratopo-
logical groups and semitopological groups. We introduce the method of “g-
function”in paratopological groups and quasitopological groups and the sub-
metrizability of paratopological and semitopological groups is considered. More-
over, we give some examples to show that some theorems on the mappings be-

tween topological groups can not be extended to paratopological groups.

2.1 First-countable paratopological groups and qua-

sitopological groups

In this section, we characterize first-countable paratopological and quasitopo-
logical groups and consider the Gs-diagonal of them. Moreover, we consider
developable and quasi-developable paratopological (quasitopological) groups.

7
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2.1.1 First-countable paratopological groups

It is well known that a topological group is metrizable if and only if it is
first-countable ( [23] [45]). Recall that a function d : X x X — R* is called a
quasi-metric on the set X if for each z,y, 2z € X satisfying that (i) d(z,y) =0 if
and only if z = y; (ii) d(z, 2) < d(z,y) + d(y,2). A topological space X is said
to be quasi-metrizable if there is a quasi-metric on X such that {B(z,¢) : £ > 0}
forms a base at each z € X. In 2001, Ravsky ( [77], Proposition 3.1) proved that
a paratopological group is quasi-metrizable if and only if it is first-countable.
Recently, Liu C and Lin S ( [62], Propositon 2.1) proved the same result with
the method of “g-function”. A g-function on a topological space (X,7) is a
mapping g : w X X — 7 such that z € g(n,z) for each n € w. A number of
generalized metric spaces have been defined or characterized with g-function,
which generalized ball neighborhoods in metric spaces. A Hausdorff space (X, 7)
is quasi-metrizable if and only if there is a function g : w x X — 7 such that
(i) g(n,z) : n € w is a local base at z; (i) y € g(n+1,2) = g(n+1,y) C g(n, )
( [41], Theorem 10.2). In the following, we gave the proof of Liu C and Lin S.

Proposition 2.1.1. ( [62], Proposition 2.1) Every Hausdorff first-countable
paratopological group is quasi-metrizable.

Proof. Suppose (X, 7) is a first-countable paratopological group. Let {V,, : n €
w} be a countable local base at the neutral element e such that V2, C Vj.
Define g : w x X — 7 as follows: g(n,z) = zV,, foreachn € w and z € X. It
is obvious that {g(n,z) : n € w} is a local base at z. Suppose y € g(n + 1,z),
then y € zV4+1,y = zv; for some v; € V1. Take z € g(n + 1,y), then z = yv,
for some vy € Viq1. Thus z = yva = zv1v2 € Vo411Vt € 2Vn = g(n,z). By
( [41], Theorem 10.2), X is quasi-metrizable. O

In the following, we consider the Gs-diagonal property in paratopological and
semitopological groups. Unlike topological groups, a first-countable paratopo-
logical group might not be metrizable. But they also have some important
generalized metrizable properties. In 1999, it was proved by Chen Y Q ( [32])
that every Hausdorff first-countable paratopological group has a Gs-diagonal.
This was then extended to semitopological groups by Arhangel’skii A V and

8
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Reznichenko E A( [16], Corollary 2.5). They showed that a Hausdorff semi-
topological group of countable w-character has a Ggs-diagonal. The following
result was established by Arhangel’skii A V and Burk D K in ( [12]) for Abelian
paratopological groups and by Liu C in the general case.

Proposition 2.1.2. ( [60], Theorem 2.1) Every first-countable Hausdorff paratopo-
logical group has a regular Gs-diagonal.

Proof. Fix a countable base {V,, : n € N} at the neutral element e in G with
V,?_,_l C V. Let z € G, then a2V, V,z are open for n € N since G is a paratopo-
logical group. For z € G,n € N, let W,(z) = 2V, NV,,z. Then W, () is an open
neighborhood of z. Let G, = {Wy(z) : € G} for n € N. Then {G,, : n € N} is
a sequence of open coverings of G.

By Zenor’s characterization of regular G4-diagonal, we only prove the follow-
ing claim.

Claim. For y,z € G,y # z, there is k € N such that no element of G
intersects both yVj and zVj.

Suppose not; for any n € N, there is an element W,(z,) € G, such that
yVn N Wh(z,) # @ and Wy (z,) N 2V, # &. Then there are an, by, cpn,dy, and f,
in V,, such that ya, = Tpbn, Tncn = dnTn = 2fn,yan = d;  dpzpb, = d;lzfnbn.
Since a, — e, we have ya, — y, hence d,,'2f,b, — y. It is clear that d,, — €
since d, € V,,. Since G is a paratopological group, then d,d, L fubn > ey =y,
hence zf,b, — y. Notice that f,,b, € V,,, thus f,b, — e, hence zfp,b, — z. G
is Hausdorff, then y = z, this is a contradiction.

Therefore, G has a regular Gs-diagonal. O

The property of having a regular Gs-diagonal is strictly stronger than that
of having a G-diagonal. This is witnessed, for example, by the fact that every
space of countable cellularity and with a regular Gs-diagonal has cardinality
at most 2 ( [30], Theorem 2.2). It is also shown in ( [11], Corollary 6) that
every first-countable Hausdorff paratopological group with cellularity < 2“ has
cardinality less than or equal to 2“.

Let U be a collection of subsets of a space X. The star of U with respect to
A C X, denoted by st(A,U), is the set | J{U e Y : UN A # @}. When A = {z},
we simply write st(z,U). We put st'(z,U) = st(z,Ud) and recursively define

9
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st"(z,U) = st(st™(z,U),U). Let n be a positive integer. We say that a space
X has a Gs-diagonal of rank n if there exists a countable collection {U : k € N}
of open covers of X such that ({st"(z,Uy) : k € N} = {z} for each z € X.
If a space has a Ggs-diagonal of any possible rank, then we say that it has a
Gs-diagonal of infinite rank. Zenor has pointed out that in [110] that a diagonal
of rank 3 is always a regular Gs-diagonal.

The result established in Proposition 2.1.2 was extended to countable 7-
character by Sanchez I ( [85], Theorem 2.25) who showed that every Hausdorff
paratopological group G with countable 7-character has a regular G-diagonal.
Moreover, it is showed by Arhangel’skii A V and Bella A ( [11]) that very Haus-
dorff first-countable paratopological group has a Gs-diagonal of infinite rank.
More recently, Sdnchez I ( [86]) showed if a dense subgroup H of a Hausdorff
paratopological group G such that H has countable m-character, then G has a
Gs-diagonal of infinite rank.

A semitopological group G is called w-narrow if, for every open neighborhood
V of the neutral element e of G, there exists a countable subset A of G such that

AV = G =V A. In the following, we discuss w-narrow paratopological groups.

Theorem 2.1.3. ( [51]) Every first-countable w-narrow semitopological group is
separable.

Proof. Let G be a first-countable w-narrow semitopological group and {U,: n €
N} a local base at the neutral element e € G.

First we construct a countable subgroup H of G such that for each n, HU,, =
G. For each n € N, take a countable subset A,, C G such that A,U, = G. Put
Cp = ApUA; U{e} and C = |J32; Cp. Then C,, and C are countable symmetric
subsets of G. Put H = |J;2, C*. Then H is a countable subgroup of G satisfying
HU, = G for each n € N.

We claim that H is dense in G. To see this, let U be an arbitrary non-empty
open subset of G. Fix a point x € U. Then there exists an open neighborhood
U, of e such that U,z C U. Since HU,, = G, we have HU,z = Gz = G. Hence,
(HUpz) N H # @. Take hy, he € H and y € U, such that hjyz = ha. Then
yxr = hl_lhz € H, since H is a subgroup of G. Hence, yz € (Upyz) NH CUNH.
The proof is complete. a
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