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Preface

Thermal energy storage (TES) is an advanced energy technology that has recently attracted
increasing interest for thermal applications such as space and water heating, cooling and
air-conditioning. TES systems have enormous potential to facilitate more effective use of
thermal equipment and large-scale energy substitutions that are economic. TES appears to be the
most appropriate method for correcting the mismatch that sometimes occurs between the supply
and demand of energy. It is therefore a very attractive technology for meeting society’s needs
and desires for more efficient and environmentally benign energy use.

This book is research-oriented, and therefore includes some practical features often not
included in other, solely academic textbooks. This book is essentially intended for use by
advanced undergraduate and graduate students in various disciplines ranging from mechanical
to chemical engineering, and as a basic reference for practicing energy engineers. Analyses of
TES systems and their applications are undertaken throughout this comprehensive book,
providing new understandings, methodologies, models and applications, along with descriptions
of several experimental works and case studies. Some of the material presented has been drawn
from the most recent information available in the literature and elsewhere. The coverage is
extensive, and the amount of information and data presented can be sufficient for several
courses, if studied in detail. We strongly believe that this book will be of interest to students,
engineers and energy experts, and that it provides a valuable and readable reference text for
those who wish to learn about more about TES systems and applications.

The first chapter addresses general aspects of thermodynamics, fluid flow and heat transfer
to furnish the reader with background information that is of relevance to the analysis of TES
systems and their applications. Chapter 2 discusses the many types of energy storage
technologies available. Chapter 3 deals extensively with TES methods, including cold TES.
Chapter 4 addresses several environmental issues that we face today, and discusses how TES
can help solve these problems. Several successful case studies are presented. Chapter 5
describes how TES is a valuable tool in energy conservation efforts that can help achieve
significant energy savings. Chapter 6 delves into sensible heat storage systems and experimental
and theoretical heat transfer aspects of stratified storage. Chapter 7 deals with a number of
modeling aspects of latent heat storage systems, while Chapter 8 covers heat transfer with phase
change in simple and complex geometries. Chapter 9 describes the thermoeconomic analysis
and optimization of TES systems, and provides several illustrative examples. Chapter 10 covers
energy and exergy analyses of a range of TES systems, along with various practical examples.
Chapter 11 discusses many practical TES applications and case studies.

Incorporated through this book are many wide-ranging, illustrative examples which provide
useful information for practical applications. Conversion factors and thermophysical properties
of various materials are listed in the appendices in the International System of Units (SI).
Complete references and a bibliography are included with each chapter to direct the curious and
interested reader to further information.

[brahim Dinger
Marc A. Rosen
June 2001
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1

General Introductory Aspects
for Thermal Engineering

1. Dincer
1.1 Introduction

Thermal energy storage (TES) is one of the key technologies for energy conservation and
therefore is of great practical importance. One of its main advantages is that it is best suited
for heating and cooling thermal applications. TES is perhaps as old as civilization itself.
Since recorded time people have harvested ice and stored it for later use. Large TES systems
have been employed in more recent history for numerous applications, ranging from solar hot
water storage to building air conditioning systems. The TES technology has only recently
been developed to a point where it can have a significant impact on modern technology.

In general, a coordinated set of actions has to be taken in several sectors of the energy
system for the maximum potential benefits of thermal storage to be realized. TES appears
to be an important solution to correcting the mismatch between the supply and demand of
energy. TES can contribute significantly to meeting society’s needs for more efficient,
environmentally benign energy use. TES is a key component of many successful thermal
systems and a good TES should allow minimum thermal losses, leading to energy savings,
while permitting the highest possible extraction efficiency of the stored thermal energy.

There are mainly two types of TES systems, i.e. sensible (e.g. water, rock) and latent
(e.g. water/ice, salt hydrates). For each storage medium, there is a wide variety of choices
depending on the temperature range and application. TES via latent heat has received a
great deal of interest. The most obvious example of latent TES is the conversion of water to
ice. Cooling systems incorporating ice storage have a distinct size advantage over
equivalent capacity chilled water units because of the large amount of energy able to be
stored as latent heat. TES deals with the storing of energy by cooling, heating, melting,
solidifying or vaporizing a substance, and the energy becomes available as heat when the
process is reversed. The selection of a TES is mainly dependent on the storage period
required, i.e. diurnal or seasonal, economic viability, operating conditions, etc. In practice,
many research and development activities related to energy have concentrated on efficient
energy use and energy savings, leading to energy conservation. In this regard, TES appears
to be one an attractive thermal application and exergy analysis as an important tool for
analyzing TES performances.



2 Thermal Energy Storage Systems and Applications

We begin this chapter with a summary of fundamental definitions, physical quantities,
and their units, dimensions, and interrelations. We consider introductory aspects of
thermodynamics, fluid flow, heat transfer, energy and entropy.

1.2 Systems of Units

There are two main systems of units: the International System of Units (Le Systéme
International d’Unités), which is normally referred to as SI units, and the English System of
Units. SI units are used most widely throughout the world, although the English System is
traditional in the United States. In this book, SI units are primarily employed. Note that the
relevant unit interconversions and relationships between the International and English unit
systems concerning the fundamental properties and quantities are listed in Appendix A.

1.3 Fundamental Properties and Quantities

In this section we briefly cover several general aspects of thermodynamics to provide adequate
preparation for the study of TES systems and applications.

1.3.1 Mass, time, length, and force

Mass is defined as a quantity of matter forming a body of indefinite shape and size. The
fundamental unit of mass is the kilogram (kg) in SI and the pound mass (Ib,) in English
units. The basic unit of time for both unit systems is the second.

In thermodynamics the unit mole (mol) is commonly used and defined as a certain
amount of a substance as follows:

m
n o (1.1)
where # is the number of moles, m the mass, and M the molecular weight. If m and M are
given by gram and gram/mol, we get n in mol. For example, one mol of water, having a
molecular weight of 18 (compared to 12 for carbon-12) has a mass of 0.018 kg.

The basic unit of length is the meter (m) in SI units and the foot (ft) in the English
system.

A force is a kind of action that brings a body to rest or to change the direction of motion
(e.g. a push or a pull). The fundamental unit of force is the Newton (N).

The four aspects, e.g. mass, time, length and force, are interrelated by the Newton’s
second law of motion, which states that the force acting on a body is proportional to the
mass and the acceleration in the direction of the force, as given in Equation 1.2:

F =ma (1.2)

Equation 1.2 shows the force required to accelerate a mass of one kilogram at a rate of one
meter per square second as | N = | kg m/s’.
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It is important to note the value of the earth’s gravitational acceleration as 9.80665 m/s”
in the SI system and 32.174 ft/s” in the English system, and it indicates that a body falling
freely toward the surface of the earth is subject to the action of gravity alone.

[1.3.2 Pressure

When we deal with liquids and gases, pressure becomes one of the most important
components. Pressure is the force exerted on a surface, per unit area, and is expressed in
bar or Pascal (Pa). The related expression is

P== (1.3)

The unit for pressure in the SI is the force of one Newton acting on a square meter area (or
the Pascal). The unit for pressure in the English system, is pounds force per square foot,
Ib/ft’.

Here, we introduce the basic pressure definitions, and a summary of basic pressure
measurement relationships is shown in Figure 1.1.

Atmospheric pressure. The atmosphere that surrounds the earth can be considered a
reservoir of low-pressure air. Its weight exerts a pressure which varies with temperature,
humidity, and altitude. Atmospheric pressure also varies from time to time at a single
location, because of the movement of weather patterns. While these changes in barometric
pressure are usually less than one-half inch of mercury, they need to be taken into account
when precise measurements are essential.

Gauge pressure. The gauge pressure is any pressure for which the base for measurement
is atmospheric pressure expressed as kPa (gauge). Atmospheric pressure serves as a
reference level for other types of pressure measurements, e.g. gauge pressure. As is shown
in Figure 1.1, the gauge pressure is either positive or negative, depending on its level above
or below the atmospheric pressure level. At the level of atmospheric pressure, the gauge
pressure becomes zero.

Pabs p
A
Pressure gauge

&J P b \ AP = Papsp— Patm
8 \ A
ﬂ Vacuum gauge
o AP = Paim — Pabs‘n
o

Pabs,n = A

Atmospheric pressure
0 Y

Figure 1.1 Illustration of pressures for measurement.
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Absolute pressure. A different reference level is utilized to obtain a value for absolute
pressure. The absolute pressure can be any pressure for which the base for measurement is
full vacuum, being expressed in kPa (absolute). In fact, it is composed of the sum of the
gauge pressure (positive or negative) and the atmospheric pressure as follows:

pressure (gauge) + atmospheric pressure = pressure (absolute) (1.4)

For example, to obtain the absolute pressure, we simply add the value of atmospheric
pressure. The absolute pressure is the most common one used in thermodynamic
calculations, despite having the pressure difference between the absolute pressure and the
atmospheric pressure existing in the gauge being read by the most pressure gauges and
indicators.

Vacuum. It is a pressure lower than the atmospheric one and occurs only in closed systems,
except in outer space. It is also called the negative gauge pressure. In fact, vacuum is the
pressure differential produced by evacuating air from the closed system. Vacuum is usually
divided into four levels: (i) low vacuum representing pressures above one Torr absolute (a
large number of mechanical pumps in industry are used for this purpose; flow is viscous),
(ii) medium vacuum varying between 1 and 10” Torr absolute (most pumps serving this
range are mechanical; fluid is in transition between viscous and molecular), (iii) high
vacuum ranging between 10~ and 10 Torr absolute (nonmechanical ejector or cryogenic
pumps are used; flow is molecular or Newtonian), and (iv) very high vacuum representing
absolute pressure below 10° Torr (primarily for laboratory applications and space
simulation).

It is important to note another additional level, at which the saturation pressure is the
pressure of a liquid or vapor at saturation conditions.

1.3.3 Temperature

This is an indication of the heat energy stored in a substance. In other words, we can
identify hotness and coldness with the concept of temperature. The temperature of a
substance may be expressed in either relative or absolute units. The two most common
temperature scales are the Celsius (°C) and Fahrenheit (°F). In fact, the Celsius scale is
used with the SI unit system and the Fahrenheit scale with the English engineering system
of units. There are also two more scales, the Kelvin scale (K) and the Rankine scale (R),
that are sometimes employed in thermodynamic applications.

Degree Kelvin is a unit of temperature measurement; zero Kelvin (0 K) is equal to
absolute zero and equal to —273.15°C. The K and °C are equal increments of temperature.
For instance, when the temperature of a product is decreased to —273°C (or 0 K), known as
absolute zero, the substance contains no heat energy and all molecular movement stops.
The saturation temperature is the temperature of a liquid or vapor at saturation conditions.

Temperature can be measured in a large number of ways by devices. In general, the
following devices are common in use:

e  Thermometers. In thermometers, the volume of the fluid expands when subjected to
heat, thereby raising its temperature. In practice, thermometers work over a certain



General Introductory Aspects for Thermal Engineering 5

temperature range. For example, the common thermometer fluid mercury becomes
solid at —38.8°C and its properties change dramatically.

e Resistance thermometers. A resistance thermometer (or detector) is made up
resistance wire wound on a suitable former. The wire used has to be of known,
repeatable, electrical characteristics so that the relationship between the temperature
and resistance value can be predicted precisely. The measured value of the resistance
of the detector can then be used to determine the value of an unknown temperature.
Amongst metallic conductors, pure metals exhibit the greatest change of resistance
with temperature. For applications requiring higher accuracy, especially where the
temperature measurement is between —200°C and +800°C, the resistance thermometer
comes into its own. The majority of such thermometers are made of platinum. In
industry, in addition to platinum, nickel (-60°C to +180°C) and copper (-30°C to
+220°C) are frequently used to manufacture resistance thermometers. Resistance
thermometers can be provided with 2, 3, or 4 wire connections, and for higher
accuracy at least 3 wires are required.

e Averaging thermometers. An averaging thermometer is designed to measure the
average temperature of bulk stored liquids. The sheath contains a number of elements
of different lengths, all starting from the bottom of the sheath, The longest element
which is fully immersed is connected to the measuring circuit to allow a true average
temperature to be obtained. There are some significant parameters namely sheath
material (stainless steel for the temperature range from —50°C to +200°C or nylon for
the temperature range from —50°C to +90°C), sheath length (to suit the application),
termination (flying leads or terminal box), element length, element calibration (to
copper or platinum curves), and operating temperature ranges. In many applications
where a multi-element thermometer is not required, such as in air ducts, cooling water
and gas outlets, a single element thermometer stretched across the duct or pipework
will provide a true average temperature reading. Despite the working range from 0°C
to 100°C, the maximum temperature may reach 200°C. To keep high accuracy these
units are normally supplied with 3-wire connections. However, up to 10 elements can
be mounted in the averaging bulb fittings, and they can be made of platinum, nickel or
copper, and fixed at any required position.

e Thermocouples. A thermocouple consists of two electrical conductors, of different
materials connected together at one end (the so-called measuring junction). The two
free ends are connected to a measuring instrument, e.g. an indicator, a controller or a
signal conditioner by a reference junction (the so-called cold junction). The thermo-
electric voltage appearing at the indicator depends on the materials of which the
thermocouple wires are made and on the temperature difference between the measuring
junction and the reference junction. For accurate measurements, the temperature of the
reference junction must be kept constant. Modern instruments usually incorporate a
cold junction reference circuit and are supplied ready for operation in a protective
sheath, to prevent damage to the thermocouple by any mechanical or chemical means.
Table 1.1 gives several types of thermocouples along with their maximum absolute
temperature ranges. As can be seen in Table 1.1, a copper-constantan thermocouple has
an accuracy of £1°C, and is often employed for control systems in refrigeration and
food processing applications. The iron-constantan thermocouple with its maximum of



