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FOREWORD

We live in a changing world. People grow, business conditions fluctuate, per-
sonal relationships develop, major industries come and go, population in-
creases, water shortages worsen, and scientific discoveries increase. Our prin-
cipal concerns arise from change—growth, decay, and fluctuation.

Change is a central concern in every human activity. The doctor tries to
improve a patient’s health; a parent tries to enhance a child’s character and
ability; a student tries to increase his or her competence; an engineer tries to
raise the efficiency of a manufacturing process. Everywhere, people are taking
actions to accomplish change.

But the processes of change have not been presented in an orderly way in
our educational institutions. The dynamics of change have seldom been taught
as a basic foundation that underlies all fields. The processes of change have
not been organized so that they can be taught at all educational levels, even
though a child, from his or her earliest awareness, begins to cope with change
and to build an intuitive awareness of change. There are several persuasive rea-
sons for teaching the processes of change as a formal academic subject.

First, the dynamics of changing conditions can become a universal
foundation underlying all fields of endeavor. With a solid understanding of
the structures that cause change, a person acquires a degree of mobility be-
tween fields. If the behavior of a particular structure is understood in one
field, it can be understood in all fields. The same structures, each with its own
characteristic behavior, are found in medicine, engineering, economics, psy-
chiatry, sociology, management, and the everyday experiences of living.

Second, although life equips us with an intuitive feel for the dynamics of
change, our intuition is reliable only in very straightforward situations. In the
more complex dynamic structures, which increasingly dominate our lives, the
intuition carried over from simple systems is misleading. As an example, in
simple systems we learn that cause and effect are closely related in both time
and space; in touching a hot stove, the hand is burned now and it is burned
here. We repeatedly learn to expect a close association between action and the
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result. In more complex systems, however, the cause of a symptom may lie far
back in time and in a remote part of the system. Only through study of struc-
ture and behavior can we develop intuition that is reliable when confronted by
complexity.

Third, studying the dynamics of change is fun. It is challenging. It is
meaningful because it couples with each person’s life and problems. To under-
stand the processes of change is to understand the surrounding world. If we
understand our world, we can hope to improve it.

This book is a door leading to understanding of change. It should provide
a glimpse of how things are interrelated, how humans and nature evolve, and
how we can influence our future if we understand how that future is being
shaped. With this book may come a deeper awareness of political processes, an
improved grasp of rising and falling economic activity, and a clearer percep-
tion of physical and social behavior. A better understanding of change in turn
raises the hope for an improved society, a more favorable relationship between
humans and nature, and prospects for greater international understanding.

JAY W. FORRESTER



PREFACE

Development of an introductory curriculum in computer simulation has been a
project spanning almost ten years and passing through three different stages.
The initial work, essentially a dissertation project of Nancy Roberts, was the
development of materials to teach the basic concepts of system dynamics.

The second stage was initiated when several people joined together in an
informal group to consider the possibilities of teaching both system dynamics
concepts and computer simulation to a broader audience. The broader audi-
ence had two important dimensions: people who were younger than the gradu-
ate students currently being introduced to system dynamics, and people not
necessarily having a strong mathematics background. High school students
and college undergraduates were chosen as appropriate target groups. In its fi-
nal year, this second stage had funding to write and pilot-test these materials
from the U.S. Department of Education, Program for Environmental Educa-
tion (Grant #G007903439).

During the last stage of the project the materials were carefully revised,
based on additional use at several educational levels and reviews from many
readers. The authors’ major revisions have therefore attempted to make this
text appropriate for anyone, from a variety of backgrounds, wanting an intro-
duction to system dynamics concepts and computer simulation.

Pilot testing of the materials has demonstrated that a mathematics back-
ground of algebra is all that is necessary for developing models in the
DYNAMO computer language. No prior computer experience is needed.

An Instructor’s Manual for this text is available which includes: sugges-
tions for different ways to structure a course based on this material; an expla-
nation of how to write system dynamics models in the BASIC language if
DYNAMO is not available, as well as the BASIC program needed for the
modeling; and suggestions for more advanced research topics outside the
scope of this introductory text. The answers to the exercises not included in
Appendix B are also available on request.

xi
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PART 1

BASIC CONCEPTS OF SYSTEM
SIMULATION

OBJECTIVES
Part I introduces the concepts key to this text, composed of:
1. Computer simulation, a method for understanding, representing, and
solving complex interdependent problems;

2. The system perspective, including three critical aspects: cause-and-effect
thinking with causal-loop diagrams, feedback relationships, and system
boundary determination.






CHAPTER 1

SIMULATION, MODELS, AND
SYSTEMS

SIMULATION AND MODELS

Originally, the word simulate meant to imitate or feign. This meaning suggests
one important characteristic of simulation: to simulate is to imitate something.
For example, children playing house are simulating family life; fighter pilots
flying a training mission are simulating actual combat.

Simulation generally involves some kind of model or simplified represen-
tation. During the course of a simulation, the model mimics important ele-
ments of what is being simulated. A simulation model may be a physical
model, a mental conception, a mathematical model, a computer model, or
some combination of all of these. For children playing house, their “model’’ is
the toys they are using, along with imaginary characters and settings. For an
air force pilot in training, the model might be a mock-up fighter plane.

Many simulations involve physical models. For example, the United
States Army Corps of Engineers has constructed a small-scale physical model
of the Mississippi River, which is used to study ways of reducing the impact of
flooding. The behavior of a major river is quite complex and cannot be studied
through direct experimentation on the actual river. Therefore engineers have
to rely on experiments using the model. Wind tunnels and wave tanks are other
forms of simulation in which a physical model is used to imitate a larger sys-
tem. For instance, a scaled-down model of a plane or ship can be constructed
out of wood or other material, and then placed in a wind tunnel or wave tank.
Using a wind tunnel, air is blown past a scale model of a plane to examine the
plane’s aerodynamic properties. Similarly, by using a wave tank a ship model
can be subjected to waves to see how it performs.

Since physical models are often relatively expensive to build and un-
wieldly to move, mathematical models are often preferred. In a mathematical
model, mathematical symbols or equations are used (instead of physical ob-
Jects) to represent the relationships in the system. To perform a simulation us-



