‘o
O
(@)
O
Q
Q

<
17p]
@)

—
O
O

(.

A Human

Developing Effective
User Documentation

A Human Factors Approach

Henry Simpson
Steven M. Casey

Library of Congress Cataloging-in-Publication Data

Simpson, Henry.
Developing effective user documentation.

Bibliography: p.

Includes index.

1. Electronic data processing documentation.
2. Computer software—Development. I. Casey,
Steven M. (Steven Michael), 1952— . II. Title.
QA76.9.D6S56 1988 005.1’5 87-29690
ISBN 0-07-057336-0

Copyright © 1988 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 DOC/DOC 8921098

ISBN 0-07-057336-0

The editors for this book were Theron Shreve and Marlene
Hamerling, the designer was Naomi Auerbach, and the production
supervisor was Richard Ausburn. This book was set in Century
Schoolbook. It was composed by the McGraw-Hill Book Company
Professional and Reference Division Composition unit. Printed and
bound by R. R. Donnelley and Sons Company.

Preface

This book was written for people who want to develop effective user
documentation for computer programs. It was written for technical
writers, editors, documentation managers, programmers, and others
involved in documentation development. User documentation is the
hard-copy or on-line documentation provided with an application pro-
gram. It tells the user how to get the program up and running, trains
the user in its operation, and provides reference information once the
user becomes experienced. It may do additional things as well—such
as help build the user’s confidence, entertain, or sell the user on the
merits of the program—but these are incidental. The main thing is to
allow the user to make the program work.

User documentation comes in many different forms. Most people
think of it as the manual that comes with a computer program, usually
with a title containing the words “user’s guide” or “reference manual.”
The term also applies to quick reference cards and guides, job per-
formance aids, computer-based tutorials and help screens, keyboard
overlays, and anything else that will support the user. The various
documentation possibilities are complementary rather than competing
alternatives. Each has its strengths and weaknesses. Deciding which
types to develop to support an application requires thought and anal-
ysis. This book is designed, in part, to help you make the right decisions.

A few words about how this book is unique. First, it deals with user
documentation from a human factors, rather than a technical writing,
viewpoint. It will help you make decisions concerning what type of
documentation your program needs, its content, its format, and how
it (like the computer program it supports) should be developed, de-
bugged, evaluated, and refined.

Second, it assumes that you already know how to write; it does not
dwell on spelling, punctuation, or grammar. These matters are left to
texts on expository or technical writing.

Finally, it shows how you can use the tool whose software you are

vii

vili Preface

documenting (the computer) to support the documentation effort. A
software revolution has occurred in the last few years, and many of
its products—word processors, graphics programs, desktop publishing
programs—can make life easier for the documentation developer. Iron-
ically, much of the publishing industry still works with the technology
of the past—typewriters, tape, scissors, rubber cement, and so on—and
is only slowly beginning to make use of the computer.

This book is divided into 12 chapters. Chapter 1 provides an overview
of the various types of user documentation. Chapters 2 and 3 focus on
the user and show how to make the “user-documentation match.” Chap-
ter 4 describes a systematic process for developing documentation.
Chapters 5 and 6 describe tools for management and production during
a documentation development project. Chapters 7 through 11 focus on
documentation, with discussions of design, architecture, graphics, doc-
umentation models, and on-line documentation. Chapter 12 tells how
to test, evaluate, and validate documentation.

The best strategy for using this book is to start at the beginning and
read straight through to the end. Regardless of the role you play in
documentation development—manager, editor, writer, or other inter-
ested party—all of the material contained in this book is relevant. It
is our sincere hope that it will help you develop better user documen-
tation.

The authors gratefully acknowledge the help of the following
software companies for answering questions and providing review
software: American Small Business Computers, Ashton-Tate, Break-
through Software, Communication Dynamics, Computer Associates,
Greene-Johnson, Hayden Software, InfoStructures, Innovative Data
Design, Lifetree Software, Living Videotext, Manhattan Graphics,
MaxThink, Microsoft, North American Mica, Perceptronics, Simon &
Schuster, SoftCorp, SSI Software, Symantec, T/Maker Graphics, Target
Software, and Writing Consultants. Special thanks to SSI Software,
Microsoft Corporation, and Perceptronics for permitting the reproduc-
tion of several pages of their documentation. We would also like to
thank Dick Noffz, documentation editor, for his helpful commentary.
Finally, thanks to the many researchers and authors whose research,
analyses, and opinions were incorporated into this book.

Henry Simpson
Steven M. Casey

Preface

Contents

vii

Chapter 1 Overview of User Documentation

Chapter

Chapter

Chapter

Chapter

Evolution of User Documentation

Why Documentation Fails

Some Ways to Classify User Documentation
External Documentation

Internal Documentation

Documentation Systems

The Three Elements of Documentation Design

A Look Inside the Documentation User

The Desktop Revolution

User Goals, Attitudes, and Time Constraints
Human Information Processing Limitations
Writing for “Dummies” and Other Misconceptions

Types of Users and the User-Documentation Match

Types of Users
Making the User-Documentation Match

The Documentation Development Process

The Documentation Development Team

Assigning Documentation Functions Within Organizations
The Documentation Development Process

Documentation Updating

Management Tools for Documentation Development

Manual Tools
Computer-Based Tools

93

102

vi Contents

Chapter 6 Production Tools for Documentation Development

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Hardware and Software Considerations
Writing Tools

Drawing Tools

Desktop Publishing

Documentation Design

Information Design Principles

Organizing and Structuring the Information
Routing

Establishing Context

Instructional Styles

Use of Concrete Examples

Tropes

Writing and Editorial Obligations

Documentation Architecture

Document-Level Considerations
Page-Level Considerations
Line-Level Considerations

The Use of Language

Graphics

Graphics Functions

The Speed-Accuracy Trade-Off
Types of Graphics

Graphic Design Rules

Rules for Table Design

Documentation Models

WordPerfect Documentation
Microsoft Chart Documentation

On-Line Documentation

Ways to Implement On-Line
Documentation

On-Line Documentation Models

Documentation Development and System
Design

Test and Evaluation

Test and Evaluation Overview
The Test and Evaluation Process

Bibliography 283

Index

287

115

115
117
125
134

149

149
150
157
158
165
168
168
170

171

m
180
185
193

199

199
201
202
203
215
219

220
239

253

253
263

270

271

272
274

Chapter

Overview of
User Documentation

This chapter defines terms and presents ideas that will be used through-
out the book. The first section briefly discusses the evolution of user
documentation. The second section describes some common reasons
user documentation fails when put to the test in the real world. The
third section discusses three different ways of classifying user documen-
tation—system versus user, procedural versus reference, and internal
versus external. The fourth and fifth sections provide an overview of the
common forms of user documentation. The sixth section discusses docu-
mentation systems—the set of documentation components used to
support a program. The final section describes the three elements of
documentation design. Incidentally, in this and later chapters the terms
“user” and “operator” are used interchangeably; they mean the same
thing.

Evolution of User Documentation

User documentation is extremely important. It is accurate to say that,
for most programs and users, user documentation will make the differ-
ence between whether a program can be used effectively or not. In fact,
it is reasonable to go a step further and say that, if the program is not
documented properly, it may not be usable at all. It follows from this
that it is only sound practice to give as much attention to user documen-
tation as to the program itself. Doing otherwise is perilous.
Awareness of the importance of user documentation has undergone
asteady evolution over the years. This is due in large part to the increas-

2 Chapter One

ing growth of the market for software products, particularly microcom-
puter software. Software publishers have discovered that programs
people can use sell more copies. Good user documentation makes
programs usable; ergo, there is more interest in making it good, or at
least look good. User documentation is increasingly becoming a selling
point for software products.

Precedent and history leave much room for improvement. The docu-
mentation provided with most computer programs has not been distin-
guished by its completeness, quality, or ease of use. In fact, much of it
to date has been awful. The situation does appear to be changing,
however. In the early days of computers, documentation might be writ-
ten by an engineer or technician who had little writing skill or under-
standing of the requirements for communicating with the reader.
Thankfully, this era of user documentation—its sort of “Dark Ages”—
now seems to be passing. The documentation provided with software
products is much better today than it was in the past.

Still, the outlook is not particularly bright. The documentation
departments of many firms—if such departments exist at all—have
little prestige and even less influence on the engineering departments
that create software. Technical writers spend a lot of time running after
engineers attempting to obtain information needed to create user docu-
mentation. One still sees ads for technical writers followed by the words
“experience preferred but not essential.” Pay scales leave little doubt
why few people major in technical writing in college.

One of the authors once became involved with a trade magazine, the
management of which had a similar view of its editorial staff. The
publisher was literally incapable of constructing a grammatical
sentence, but was a terrific ad salesman and made several times the
salary of the magazine’s editor. The publisher once explained that
management justified the disparity on the basis that many people could
write, but few could sell. However unfair, this is sound thinking from
a business viewpoint, and also shows how little esteem many people
have for those who use the English language and their imaginations to
explain technical mysteries to readers. It may not represent the prevail-
ing view of the importance of good technical writing, but it does repre-
sent a fairly widely held view. We may take some comfort from the fact
that the situation seems to be improving.

For all the optimistic signs, it probably remains true that the writing
of user documentation is widely considered to be of less importance than
the writing of the software that the documentation describes. The atti-
tude is understandable. Think about it the next time you are flying in
ajetliner; ask yourself how important manuals are to pilots, navigators,
and mechanics. Likewise, as you are being wheeled into the operating
room to have your appendix removed, consider the utility of textbooks
describing surgical procedures.

Overview of User Documentation 3

Why Documentation Fails

There are several common reasons the creator of a product may develop
poor supporting documentation. As you read, see if you have direct expe-
rience with any of these problems on the documentation projects on
which you have worked.

A Documentation Editor’s Perspective

The documentation editor for a major mainframe computer manufac-
turer identified four major problems with the user documentation devel-
oped within his organization. While the problems he identified are not
necessarily universal, they are typical.

First, much user documentation is written at the wrong level. The
usual case—especially if documentation is prepared by programmers or
other technical professionals—is for it to be too technical, too complex,
and to assume too much knowledge on the part of the reader. The oppo-
site—writing material at too simple a level—can also occur but is rela-
tively rare. As emphasized elsewhere in this book, the first step in devel-
oping effective user documentation is to have a good understanding of
the user and, ideally, to conduct function and task analyses that allow
definition of user information requirements (see Chapter 3).

Second, many user documents are actually technical documents. That
is, instead of helping the user understand the program and how to use
it, they tend to focus on the mechanics of software and the methods by
which operations are performed. Often, the document is written in the
technical language of its author—and not well suited to the end user.
The editor said he spent much of his time modifying such material to
suit the needs of the users.

Third, many user documents suffer from the “multiple-author
syndrome.” The authors of different parts of the document may have
contrasting styles, use terms differently, discuss the same topics, cover
topics at different depths and breadths, and so forth. Often, working
these separate contributions into a unified document requires a major
editorial effort (as the authors of the present book are well aware, inci-
dentally). In the best of all possible worlds, a given user document has
a single author. Since most of us live in one of the other possible worlds,
this ideal is seldom achievable. However, negative consequences of
multiple authors can be reduced considerably by adequate planning,
outlining, and developing documentation standards (see Chapters 3, 4,
5, and 7).

Fourth, many documents suffer from inconsistent terminology—the
practice of describing the same thing with different words. Related to
thisis the use of the same word to mean different things. These problems
occur with single authors but are compounded when multiple authors
are involved. Prevention is probably impossible, but effects can be mini-

4 Chapter One

mized by stressing the use of concrete language, minimizing the use of
technical terms, and careful outlining. It is absolutely essential that an
editor work through such materials to correct the inconsistencies before
the document is released to the world.

Resource Allocation

The most inexcusable reason for poor documentation is the belief on the
part of its developer that such documentation is of secondary impor-
tance and does not justify the expenditure of the monetary, personnel,
and time resources necessary to produce a first-rate product. The devel-
oper might follow the line of reasoning that computer programs are
complex things and the document user must expect to work hard to
learn what is necessary to operate the program successfully. Nothing,
of course, is further from the truth. In recent years, as software has
reached the mass marketplace and come into the hands of many unso-
phisticated users, there has been an increasing design emphasis on ease
of use. Inadequate documentation undercuts this whole philosophy.
Indeed, many a good program has been sunk by poor documentation.

The “Myopia Syndrome”

Related to the problem just cited is the software expert’s familiarity
with his or her product. This might be termed the “myopia syndrome.”
Software developers become so familiar with their products that they
fail to approach the problems of learning and operating a program from
the perspective of the new user. When developers are solely responsible
for documentation development and that documentation is not evalu-
ated properly by outside users, the chances are good that the resulting
documentation will not be adequate. Common problems are the use of
unnecessarily complex language, incomplete coverage of topics, and a
tendency to assume that the reader knows more than should be
expected. The foregoing is not meant as a condemnation of system devel-
opers as documentation developers. The real issue is a frame of mind,
which in simple terms amounts to an appreciation that the user comes
to a new program with much less knowledge than its developer. This gap
must be crossed if documentation is to do its job.

Time

Another common reason for poor user documentation is that it is often devel-
oped late in the product development cycle, perhaps even after the software
itself has been released (Mosier, 1984). Time is short, deadlines are tight, and
the documentation is developed under pressures that mitigate against

Overview of User Documentation 5

adequate planning, quality control, user field testing, and other factors
important in a documentation development project. The earlier documenta-
tion is developed, the better. The converse is also true.

Documentation Development Skills

Quite often, documentation is developed by people who lack the requisite
skills for a successful product. It is common to point the finger at program-
mers and engineers who may, in some cases, produce user documentation
themselves or provide the source documentation from which technical writ-
ers work. There is an old cliché about engineers not being able to write. One
ofthe authors of this book is an engineer and has heard it often enough. There
may be some truth in it, as there is in the notion that all psychologists are
a little crazy (the other author of this book is a psychologist), but such sweep-
ing statements really miss the point of why engineers do not usually produce
good documentation. They tend to consider — and rightly so— that writing
is not their primary function. As is widely acknowledged, they have other
primary functions—designing things, debugging them, making them work
properly—and writing documentation comes second, if at all. If the engineer
has the inclination, time, motivation, and writing skills, he or she may be the
ideal author of user documentation.

Who, then, writes the documentation? Technical writers, those “poor,
harmless drudges” of the computer industry, as Samuel Johnson might
have put it. The skills of these writers vary greatly but, as in most
things, you get what you pay for. If you hire cheap, you get the kid with
the English degree whose novel was unpublishable, the technician who
was unable to move up a rung, or the out-of-date engineer who was
unable to hack it in the first profession.

If you are willing to pay for talent, you may hope to find a professional
who knows how to put the words together, has an appreciation of docu-
mentation as a learning and teaching tool, and who understands that
adequate analysis of users and the tasks they must perform underlies
all good documentation. In fact, it is fair to say that writing skill, though
important, is probably not as important as understanding the last two
factors just cited: creating learning and teaching tools, and being able
to respond to users’ needs in developing documentation.

As a sort of footnote and for whatever it’s worth, the acquisitions
editor for the publisher of this book, upon receiving the authors’ book
proposal, remarked that he received many such proposals from people
who wanted to write books on how to prepare user documentation and
that most of them were badly written. The point is not that we had writ-
ten such a great proposal—it went through three revisions before finally
being accepted—but that so many folks who ply the writing trade aren’t
good writers. If there’s a message there, it’s a disquieting one.

6 Chapter One

Obsolescence

Documentation often fails because it becomes outdated. Printed docu-
mentation may be difficult to modify or update because of structure or
layout, or because of the way it is generated physically. As we all know,
no one uses typewriters, editor’s scissors, rubber cement, and such any
more for creating and editing documents. (Of course not!) These are
outdated techniques that make it terribly inefficient and time-
consuming to create and edit documentation. Now we have the word-
processing program, along with various automated production tools,
graphics packages, and other software, to make the developer’s life
easier. However, not everyone has yet gotten the word.

To give an actual example, one of the authors recently visited a two-
year-old computer company that is developing a very advanced minisu-
percomputer. An outside consultant had determined that at least 20
separate documents would be required to support this new computer.
These included installation manuals, hardware manuals, user’s guides
for various programming languages, and so forth. The company’s docu-
mentation manager (actually, the marketing director) planned to hire
a team of technical writers and to have them produce text on microcom-
puters using a popular word-processing program, have the copy typeset,
have the artwork produced by a consultant, and then have the docu-
ments offset-printed by a contractor. (Incidentally, the word-processing
program, which shall remain nameless, is one of the most popular ones,
also widely acknowledged to be nonintuitive, difficult to use, and to take
along time to master. Like lemmings, a lot of people continue to use it—
presumably, because a lot of other people continue to use it. See Chapter
6 for an in-depth discussion of word-processing software.)

The proposed documentation development method is a great improve-
ment over using typewriters and such. Still, it presents problems in
terms of updating because so many separate parties are involved in
document production. It would make much more sense to use a desktop
publishing program and to produce all documentation in house. But
that, as they say, is a new idea in the documentation world. The irony
of the situation is that the system being documented is one of the most
advanced on the drawing board. (Desktop publishing is discussed in
detail in Chapter 6.)

Documentation Development Process

Perhaps the most common reason for poor documentation is the failure
to spend the necessary time and funds on the documentation develop-
ment process (Hendricks, Kilduff, Brooks, & Marshak, 1982) (Figure
1.1). Too often a piece of documentation—for example, a user’s
manual—is thought of in isolation and regarded as the product solely

1. Form documentation
development team

!

2. Make user-documentation
match

|

3. Prepare documentation
plans

4. Develop documentation
standards

|

5. Develop management
plan

|

6. Create documentation

7. Conduct technical
review

8. Conduct user evaluation

:

9. Create final draft

Figure 1.1 Documentation is most effective when
developed systematically, according to a well-
thought-out documentation development process.

of writing. To develop proper documentation, considerable front-end
work is required beforehand; writing should be the last thing done.
Documentation objectives must be defined. A documentation plan must
be developed. The types of documentation for the project must be chosen.
The various user groups must be specified, and documentation must be
tailored to satisfy their needs. All of these things should be done before
the writing begins, and all too often they are not. In short, the documen-
tation development process entails more than writing. Chapters 3 and
4 discuss the documentation development process in detail; Chapter 2

discusses users.

Overview of User Documentation

7

8 Chapter One

Documentation developers often fail to assess the needs of users
before developing documentation and may fail to do the other front-end
analyses required before putting pen squib to paper (or fingers to
keyboard). Typically, they are not willing or able to expend the time and
funds needed to develop and maintain good documentation. Documen-
tation developers must realize that their task entails more than writing.
More importantly, those responsible for allocating resources to docu-
mentation development projects must understand the process them-
selves and allocate the resources necessary for successful products.
Without this appreciation, the documentation will be inadequate. Poor
documentation influences the user’s perception of both the documenta-
tion and the software being documented. Write a bad manual, and its
user is liable to throw both it and the software out the window or, more
likely, send them back to the manufacturer for a refund.

Documentation Systems

The larger and more complex the program, the more likely it will need
several separate documentation components to fulfill the various needs
of its audience. The documentation developer must decide what compo-
nents are needed and the function to be fulfilled by each (Hendricks, et
al., 1982; Mosier, 1984). Together, the various components comprise a
documentation system (Figure 1.2).

A documentation system is a system in the same sense as any other
type of system—including a computer system. A system, formally
defined, is a set of interdependent components that work together to
achieve a goal. (Documentation systems are discussed in detail later in

/

ANNNN
User’s 9uide

%\’\\%’Qma?’al ; v
.

Figure 1.2 A documentation system is a set of
interdependent documentation components, each
with an assigned role.

Overview of User Documentation 9

this chapter.) Documentation developers frequently fail to recognize the
separate roles and interdependent nature of the various document
components they develop. For example, they may fail to identify certain
components needed for a product or assume that a particular type of
document will fulfill the needs of another. For example, it is quite
common to open a new software package and discover that the documen-
tation consists of a reference manual—without a tutorial, quick-refer-
ence material, or other documentation components needed to learn how
to use the program and use it efficiently once the learning phase is over.
Obviously, making this mistake can have serious consequences.

Some Ways to Classify User Documentation

This section distinguishes between system and user documentation,
procedural and reference documentation, and internal and external
documentation.

System Versus User Documentation

There are two classes of program documentation (Figure 1.3). The first
is documentation intended for the programmers who create, maintain,
troubleshoot, and update an existing program. This documentation
consists of such elements as program listings; tables of variables, func-
tions, and procedures; written explanations of parts of the program; and
remarks in program code. This documentation is prepared by the
program’s authors and maintainers and is referred to as “system docu-
mentation.” Beyond the description just given, this book does not
discuss system documentation.

The second type of documentation is “user documentation.” This may
be in written or other forms. It may be provided outside the program,
appear within the program, or be a combination of both. Such documen-

System documentation User documentation
For: Programmers Users
Purpose: Design Operation
Maintenance
Troubleshooting
Updating
Contents: Program listings Program explanation
Tables of variables, functions, procedures Program operation
Written explanations Reference information
Remarks in code

Figure 1.3 The audience for, purpose of, and contents of system and user
documentation differ.

10 Chapter One

tation must explain the program, initiate the new user, and provide the
reference information the experienced user needs. This type of docu-
mentation is the subject of this book.

Procedural Versus Reference Documentation

Psychologists commonly distinguish between procedural and declara-
tive knowledge. Procedural knowledge is knowledge of how to do things
—for example, to ride a bicycle. Declarative knowledge is knowledge
about things—for example, that bicycles are ridden with the hands on
the handlebars, feet on the pedals, and that centrifugal force plays a
role. Declarative knowledge is usually a prerequisite to procedural
knowledge, but not vice versa. For example, it is important to know
about bicycles before attempting to ride one, but such knowledge does
not guarantee that one will be able to ride successfully. As we all know,
one cannot learn to cook, box, or perform open-heart surgery simply by
reading a book; the activity must be practiced until the skills are “in the
hands.” It is possible for procedural knowledge to exist in the absence
of complete declarative knowledge; this is demonstrated by musicians
who play by ear, politicians who write legislation on complex issues, and
engineering managers who lack detailed technical knowledge.

For all these technicalities, the important point is that a program user
must master more than facts to operate a computer program success-
fully. Facts form the foundation, but procedures tell how actually to do
things. User documentation provides the necessary facts in the form of
reference information—in reference manuals, guides, or quick refer-
ence cards. Procedural information, if provided, usually appears in tuto-
rials or descriptions of procedures in a user’s guide.

There is a problem. It is common for user documentation to cover facts
adequately but to overlook procedural information. The reasons for this
oversight are debatable but probably reduce to ignorance by authors of
the importance of procedural information. It is quite understandable
that such ignorance should exist. People who learn to do things often
forget how they learned them and have difficulty explaining how to do
them. (Have you ever seen a description of how to ride a bicycle, pilot
an airplane, or play the piano?) Thus, it may seem to the skilled person
that the essentials reduce to a set of easily explainable facts. Clearly,
there is much more to the matter, and the procedures—however difficult
they are to describe—need to be explained. Fortunately, the procedures
for operating most computer programs can be laid out in simple step-
by-step fashion and don’t pose the difficulty of explanation of complex
skills. Put another way, how to work Microsoft Multiplan isn’t as hard
to describe as how to play a Beethoven piano sonata.

