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Cellular neural networks and visual computing

Cellular Nonlinear/neural Network (CNN) technology is both a revolutionary concept and an
experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are
set to change the way analog signals are processed and are paving the way to an entire new analog
computing industry.

This unique undergraduate-level textbook includes many examples and exercises, including CNN
simulator and development software accessible via the Internet. It is an ideal introduction to CNN’s
and analogic cellular computing for students, researchers, and engineers from a wide range of
disciplines. Although its prime focus is on visual computing, the concepts and techniques described
in the book will be of great interest to those working in other areas of research, including modeling

of biological, chemical, and physical processes.

Leon Chua is a Professor of Electrical Engineering and Computer Science at the University of
California, Berkeley where he coinvented the CNN in 1988 and holds several patents related to CNN
Technology. He received the Neural Network Pioneer Award, 2000.

Tamas Roska is a Professor of Information Technology at the Pdzmény P. Catholic University of
Budapest and head of the Analogical and Neural Computing Laboratory of the Computer and
Automation Research Institute of the Hungarian Academy of Sciences, Budapest and was an early
pioneer of CNN technology and a coinventor of the CNN Universal Machine as an analogic
supercomputer, He has also spent 12 years as a part-time visiting scholar at the University of

California at Berkeley.
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1

Introduction

Scenario

Recent history of the electronic and computer industry can be viewed as three waves
of revolutionary processes.! The first revolution, making cheap computing power
available via microprocessors in the 1970s, led to the PC industry of the 1980s. The
cheap laser and fiber optics, which resulted in cheap bandwidth at the end of the
1980s, led to the Internet industry of the 1990s. The third wave, the sensor revolution
at the end of the 1990s, will also provide for a new industry. Sensor revolution
means that cheap sensor and MEMS (micro-electro-mechanical system) arrays are
proliferating in almost all the conceivable forms. Artificial eyes, nose, ears, taste,
and somatosensory devices as well as sensing all physical, chemical, and biological
parameters, together with microactuators, etc. are becoming commodities. Thousands
and millions of generically analog signals are produced waiting for processing. A new
computing paradigm is needed. The cited technology assessment! reads:

The long-term consequence of the coming sensor revolution may be the emergence of a newer analog
computing industry in which digital technology plays a mere supporting role, or in some instances
plays no role at all.

For processing analog array signals, the revolutionary Analogic Cellular Computer
paradigm is a major candidate. The core of this computer is a Cellular Nonlinear/neural
network? (CNN), an array of analog dynamic processors or cells. The computer archi-
tecture is the CNN Universal Machine,? with its various physical implementations. At
the same time, Analogic CNN computers mimic the anatomy and physiology of many
sensory and processing organs with an additional capability of stored programmability.
Recent studies on optical and nano-scale implementations open up new horizons on the
atomic and molecular levels.

The CNN was invented by Leon O. Chua and Lin Yang in Berkeley in 1988. Unlike
cellular automata, CNN host processors accepting and generating analog signals, the
time is continuous, and the interaction values are also real values. Unlike lattice
dynamics, the input of the CNN array plays an important role. Moreover, CNN
becomes a rigorous framework for complex systems exhibiting emergent behavior and
the various forms of emergent computations. The notion of the cloning template, the
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representation of the local interconnection pattern, is crucial. This allows not only
modeling but also engineering of complex systems.

Stored programmability, invented by John von Neumann, was the key for endowing
digital computers with an almost limitless capability within the digital universe of
signals, opening the door to human invention via digital algorithms and software.
Indeed, according to the Turing—Church thesis, any algorithms on integers conceived
by humans can be represented by Recursive functions/Turing Machines/Grammars.
The CNN Universal Machine is universal not only in a Turing sense but also on analog
array signals. Due to stored programmability, it is also open to human intelligence
with a practically limitless capability within the universe of analog array signals, via
analogic spatio-temporal algorithms and software.

The new world opened by the Analogic CNN computing paradigm is nowadays a
reality. There are operational focal plane visual microprocessors with 4096 or 16 000
processors, which are fully stored, programmable, and there are Walkman-size self-
contained units with image supercomputer speed.

The CNN Universal Chip* highlighted on the cover of this book represents a mile-
stone in information technology because it is the first operational, fully programmable
industrial-size brain-like stored-program dynamic array computer in the world. This
complete computer on a chip consists of an array of 64 x 64 0.5 micron CMOS cell
processors, where each cell is endowed not only with a photo sensor for direct optical
input of images and videos, but also with communication and control circuitries, as
well as local analog and logic memories. Each CNN cell is interfaced with its nearest
neighbors, as well as with the outside world. This massively parallel focal-plane array
computer is capable of processing 3 trillion equivalent digital operations per second (in
analog mode), a performance which can be matched only by supercomputers. In terms
of the SPA (speed, power, area) measures, this CNN universal chip is far superior to
any equivalent DSP implementation by at least three orders of magnitude in either
speed, power, or area. In fact, by exploiting the state-of-the-art vertical packaging
technologies, close to peta (10'°) OPS CNN universal cube can be fabricated with
such universal chips, using 200 x 200 arrays.

There are many applications which call for TeraOPS or even PetaOPS in a
Walkman-size device. Some of these applications include high-speed target recogni-
tion and tracking, real-time visual inspection of manufacturing processes, intelligent
vision capable of recognizing context sensitive and moving scenes, as well as appli-
cations requiring real-time fusing of multiple modalities, such as multispectral images
involving visible, infrared, long wave infrared, and polarized lights.

In addition to the immense image and video processing power of the CNN universal
chip, we can exploit its unique brain-like architecture to implement brain-like informa-
tion processing tasks which conventional digital computers have found wanting. Such
brain-like processing operations will necessarily be non-numeric and spatio-temporal
in nature, and will require no more than the accuracy of common neurons, which is
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less than eight bits. Since the computation is a non-iterative wave-like process, the
input—output accuracy is not constrained by the iterative digital process. The CNN
universal chip is therefore an ideal tool for developing and implementing brain-like
information processing schemes. It is this vision of brain-like computing via the CNN
universal chip that makes the publication of this textbook both a timely and historic
event, the first undergraduate textbook on this new computing paradigm.

The textbook

Cellular Nonlinear/neural Networks (CNN) is an invention with rapid proliferation.
After the publication of the cited original paper by Chua and Yang in 1988, several
papers explored the rich dynamics inherent in this simple architecture. Indeed, many
artificial, physical, chemical, as well as living (biological) systems and organs can be
very conveniently modeled via CNN. Hence, the book is written in such a way that no
electronic circuit knowledge is needed to understand the first 14 chapters of this book.
Indeed, it is our teaching experience, at Berkeley and in Budapest, that undergraduate
students from different backgrounds and with a modest knowledge of mathematics and
physics taught in engineering, physics, and chemistry departments, as well as biology
students from similar backgrounds can understand the book.

In Chapter 2, the basic notations, definitions, and mathematical foundation are
presented. The standard CNN architecture is introduced. The cell, the interconnection
structure, the local connectivity pattern, the canonical equations and some useful
notations, and the biological motivation are described. The importance of the local
interconnection “synaptic weight” pattern, the cloning template, or gene, is empha-
sized. Indeed, these templates, mostly defined by 19 parameters, define the complete
array dynamics, which generate an output “image” from an input “image.”

In Chapter 3, after two examples, a simple technique for determining array dynam-
ics, based on cell dynamics, is introduced and explained. Next, 11 useful templates are
shown with examples and rigorous mathematical analysis.

Chapter 4 is devoted to the digital computer simulation of CNNdynamics. Nu-
merical integration algorithms, digital hardware accelerators, as well as the analog
implementation are discussed. An accompanying simulator CANDY is provided in
the Appendix.

In Chapter 5 the characterization of the simplest form of a CNN is explored and
the binary input binary output case is described. It is quite surprising that even this
very basic form with a 3 x 3 neighborhood template could implement 2512 ~ 10!34
different local Boolean functions.

Uncoupled CNN templates constitute a simple class of CNN. Their unified theory
and applications described in Chapter 6 provide a thorough understanding of this class
of CNN.
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In Chapter 7, we begin the introduction of the CNN computer represented by the
CNN Universal Machine architecture. We emphasize the need for local analog and
logic memory, a global clock and global wire, as well as a local logic unit. It is shown,
for example, that every local Boolean function can be realized by using these simple
elements in each cell processor.

In Chapter 8, “Back to Basics,” the mathematical analysis of the stability of CNN
in terms of cloning templates is presented. It turns out that, in most cases, simple
conditions are available to test the templates defining completely stable CNN.

The complete architecture of the CNN Universal Machine is shown in Chapter
9. Moreover, the computational infrastructure consisting of a high-level language, a
compiler, operating system, and a development system are introduced. An example
describing all the elementary details uncovers the basic implementation techniques.

Chapter 10 presents template design and optimization algorithms. The use of a
simple program TEMPO for template optimization and decomposition is prepared and
provided in the Appendix.

Many two-dimensional linear filters can be represented by CNN. These techniques
are shown in Chapter 11 which also introduces the discrete space Fourier transform.

Once we allow spatial coupling, the dynamics of the CNN becomes not only much
richer, but also exotic. The coupled CNN is described in Chapter 12 with a design
method for binary propagation problems. In particular, it turns out that the global
connectivity problem, long considered impossible by locally connected arrays, can
be solved by a quite simple coupled CNN.

Nonlinear and delay type synaptic weights and their use are introduced in Chapters
13 and 14, respectively. These types of CNN are typical in modeling living neural
networks as well as in solving more complex image processing problems.

In Chapter 15, we show the basics of the CMOS analog and digital implemen-
tation of the CNN Universal Machine. Indeed, the first visual microprocessor and
its computational infrastructure are described. A computing power comparison is
really breathtaking: about three orders of magnitude speed advantage for complex
spatio-temporal problems on the same area of silicon.

Finally, in Chapter 16, the surprising similarity between CNN architecture and
models of the visual pathway is highlighted. Models and some measurements in living
retina are compared.

In addition to the many examples in the text, exercises at the end of the book help
both students as well as lecturers to make practical use of the textbook.

The Appendices, provided via the Internet, contain a CNN template library
(TEMLIB), a simple yet efficient simulator (CANDY), and a template design and
optimization tool (TEMPO/TEMMASTER). These design tools provide for a working
environment for the interested reader as well as for the students to explore this new
field of modeling and computing. The text can be taught, typically, as a one-semester
course.
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New developments

More than 1000 reviewed papers and books have been published since the seminal
paper by Chua and Yang on CNN technology. Recently, the scope has started to
broaden in many directions. Various new forms of physical implementations have
started to emerge. Optical implementation is already emerging using molecular level
analog optical memory (Bacteriorhodopsine or polymer materials) and atomic® and
molecular® level implementation of the CNN array as well as of the CNN Universal
Machine may become feasible; the Analogic Cellular Computer represents a new
platform for computing. However, this notion of computing contains brand-new
elements and techniques, partially reflecting some forms of nature-made information
processing.

Nature-made information processing has several different manifestations. On the
molecular level this means the protein structures or interacting molecules on a two- or
three-dimensional grid; on the neuronal level it may mean the many sensory organs
and subsequent neural processing. On the functional neuronal level it may mean the
information representation in spatio-temporal memory, the functional laterality of the
brain, as well as the parallel processing places and functional units learned via PET,
NMR, fNMR, etc. On the mathematical-physical level it may mean several dynamic
spatio-temporal processes and phenomena represented by different nonlinear partial
differential equations (PDEs). Autowaves, spiral waves, trigger waves are just a few of
these exotic waves.

In modern image processing, PDE-based techniques are becoming the most chal-
lenging and important new directions. For the analogic CNN computer these are
the native, elementary instructions like the multiplication, addition, XOR, NAND,
etc. in digital computers. A new understanding about computing itself is emerging.
The striking intellectual and scientific challenge is how to combine these diverse
phenomena in useful algorithms running on a standard spatio-temporal computer,
based on the CNN Universal Machine.

The analogic cellular visual microprocessors, embedded in a complete program-
ming environment,” offer surprising system performance. Two types of tasks are
becoming tractable:

Class K: Kilo real-time [K r/t] frame rate class.

The frame rate of the process in this class is in the order of about a thousand
times faster than the real-time video frame rate (30 frames per second). A typical
experiment is where a pattern classification with more than 10,000 frames per
second was tested (more than 0.33 K r/t). Using current CMOS technology, 1.5
K r/t, that is about 50,000 frame per second, is feasible.

In this Class K, the high frame rate is the key in the computation. Clearly, the sensing
and computing tasks are to be physically integrated. In standard digital technology,
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there is no time for A to D conversion and to complete the calculation, all within a few

microseconds.

Class T: TeraOPS equivalent computing power class.

Even if the frame rate is small, like real-time video (30 frames per second), the
required computing power (per chip) is enormous. Indeed, a trillion operations per
second are to be — and can be — achieved. These TeraOPS chips are capable of
solving a nonlinear PDE on a grid in a few microseconds. The detection of a moving
inner boundary of the left ventricle in an echocardiogram, via an analogic CNN
algorithm combining several waves, local logic, and morphology operators, took
only 250 microseconds on the ACE4K analogic Visual Microprocessor Chip made
in Seville. These chips hosted 4096 cell processors on a chip. This means about
3.0 TeraOPS equivalent computing power, which is about a thousand times faster
than the computing power of an advanced Pentium processor.

A major challenge, not yet solved by any existing technologies, is to build analogic
adaptive sensor-computers,® where sensing and computing understanding are fully and
functionally integrated on a chip. Adaptive tuning of the sensors, pixel by pixel, is
performed based on the content and context of the dynamically changing scene under
sensing.
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2.1

Notation, definitions, and mathematical
foundation

Basic notation and definitions

Definition 1: Standard CNN architecture
A standard CNN architecture consists of an M x N rectangular array of cells (C (i, j))
with Cartesian coordinates (i, j),i =1,2,..., M, j =1,2,..., N (Fig. 2.1).

Column
B B BBy
0000 O
00000
Rowflil |:| [IDD
Fig. 2.1.
Remark:

There are applications where M # N. For example, a 5 x 512 CNN would be more
appropriate for a scanner, fax machine, or copy machine.

Definition 2: Sphere of influence of cell C(i, j)
The sphere of influence, S, (i, j), of the radius r of cell C(i, j) is defined to be the set
of all the neighborhood cells satisfying the following property

Sr(i,j)={C(k,l)lI max _ (k—il. I —jl} =r} 2.1

<k=M,1<I<

where r is a positive integer.



