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Preface

This volume contains the papers presented at the inaugural workshop on Data
Mining and Bioinformatics at the 32nd International Conference on Very Large
Data Bases (VLDB). The purpose of this workshop was to begin bringing to-
gether researchers from database, data mining, and bioinformatics areas to help
leverage respective successes in each to the others. We also hope to expose the
richness, complexity, and challenges in this area that involves mining very large
complex biological data that will only grow in size and complexity as genome-
scale high-throughput techniques become more routine. The problems are suf-
ficiently different enough from traditional data mining problems (outside of life
sciences) that novel approaches must be taken to data mine in this area. The
workshop was held in Seoul, Korea, on September 11, 2006.

We received 30 submissions in response to the call for papers. Each submis-
sion was assigned to at least three members of the Program Committee. The
Program Committee discussed the submission electronically, judging them on
their importance, originality, clarity, relevance, and appropriateness to the ex-
pected audience. The Program Committee selected 15 papers for presentation.
These papers are in the areas of microarray data analysis, bioinformatics system
and text retrieval, application of gene expression data, and sequence analysis.
Because of the format of the workshop and the high number of submissions,
many good papers could not be included. Complementing the contributed pa-
pers, the program of VDMB 2006 included an invited talk by Simon Mercer,
Program Manager for External Research, with an empahsis on life sciences.

We would like to thank the members of the Program Committee for their
hard and expert work. We would also like to thank the VLDB organizers, the
external reviewers, the authors, and the participants for their contribution to the
continuing success of the workshop. Thanks also to Indiana University School of
Informatics for the generous financial support.

October 2006 Mehmet Dalkilic
Sun Kim

Jiong Yang

Program Chairs

VDMB 2006
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Bioinformatics at Microsoft Research

Simon Mercer

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399
simon.mercer@microsoft.com

Abstract. The advancement of the life sciences in the last twenty years has been
the story of increasing integration of computing with scientific research, and this
trend is set to transform the practice of science in our lifetimes. Conversely,
biological systems are a rich source of ideas that will transform the future of
computing.

In addition to supporting academic research in the life sciences, Microsoft
Research is a source of tools and technologies well suited to the needs of basic
scientific research. Current projects include new languages to simplify data
extraction and processing, tools for scientific workflows, and biological
visualization.

Computer science researchers also bring new perspectives to problems in
biology, such as the use of schema-matching techniques in merging ontologies,
machine learning in vaccine design, and process algebra in understanding
metabolic pathways.

M.M. Dalkilic, S. Kim, and J. Yang (Eds.): VDMB 2006, LNBI 4316, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006



A Novel Approach for Effective Learning of Cluster
Structures with Biological Data Applications

Miyoung Shin

School of Electrical Engineering and Computer Science, Kyungpook National University,
1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea
shinmy@knu.ac.kr

Abstract. Recently DNA microarray gene expression studies have been ac-
tively performed for mining unknown biological knowledge hidden under a
large volume of gene expression data in a systematic way. In particular, the
problem of finding groups of co-expressed genes or samples has been largely
investigated due to its usefulness in characterizing unknown gene functions or
performing more sophisticated tasks, such as modeling biological pathways.
Nevertheless, there are still some difficulties in practice to identify good clus-
ters since many clustering methods require user’s arbitrary selection of the
number of target clusters. In this paper we propose a novel approach to system-
atically identifying good candidates of cluster numbers so that we can minimize
the arbitrariness in cluster generation. Our experimental results on both syn-
thetic dataset and real gene expression dataset show the applicability and use-
fulness of this approach in microarray data mining.

1 Introduction

In recent years, microarray gene expression studies have been actively pursued for
mining biologically significant knowledge hidden under a large volume of gene ex-
pression data accumulated by DNA microarray experiments. Particularly great atten-
tions have been paid to data mining schemes for gene function discovery, disease
diagnosis, regulatory network inference, pharmaceutical target identification, etc
[1, 2, 3]. A principal task in investigating there problems is to identify gene groups or
samples which show similar expression patterns over multiple experimental condi-
tions. The detection of such co-expressed genes or samples allows us to infer their
high possibility to have similar biological behaviors, so these can be used to charac-
terize unknown biological facts as in [4,5,6,7,8,9].

So far, numerous methods have been investigated to efficiently find groups of
genes or samples showing similar expression patterns. An extensive survey of cluster-
ing algorithms is given in [10]. The most widely-used algorithms for microarray data
analysis are hierarchical clustering [4], k-means clustering [8], self-organizing maps
[5], etc. Also, there are more sophisticated algorithms such as quantum clustering

M.M. Dalkilic, S. Kim, and J. Yang (Eds.): VDMB 2006, LNBI 4316, pp. 2— 13, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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with singular value decomposition [11], bagged clustering [12], diametrical clustering
[13], CLICK [14], and so on.

Nevertheless, there still remain some difficulties in practice to identify good
clusters in an efficient way. One of the problems is that many clustering methods
require user’s arbitrary selection of the number of target clusters. Moreover, the
selection of the number of clusters dominates the quality of clustering results. Some
recent tasks have addressed these issues for cluster analysis of gene expression data.
In [15], Bolshakova et al. estimated the number of clusters inherent in microarray
data by using the combination of several clustering and validation algorithms. On
the other hand, in [16], Amato et al. proposed an automatic procedure to get the
number of clusters present in the data as a part of a multi-step data mining frame-
work composed of a non-linear PCA neural network for feature extraction and
probabilistic principal surfaces combined with an agglomerative approach based on
Negentropy. Also, a recent paper by Tseng er al. [17] suggested a parameterless
clustering method called the correlation search technique. Yet, these methods are
either still based on an arbitrary selection of the number of clusters or work only with
their own clustering algorithms.

In this paper our concern is to propose a systematic approach to identify good
number of clusters on a given data, which also can possibly work with the widely-
used clustering algorithms requiring a specified number k of clusters. To realize this,
we define the goodness of the number of clusters in terms of its representational
capacity and investigate its applicability and usability in learning cluster structures
with synthetic dataset and microarray gene expression dataset. The rest of the paper is
organized as follows. In Section 2, we give the definition of the representational
capacity (hereafter RC) and introduce its properties. Based on these, in Section 3, we
present the RC-based algorithm for the estimation of the number of clusters on a
given dataset. In Section 4, the experimental results are presented and discussed.
Finally, concluding remarks are given in Section 5.

2 Definition of RC and Its Properties

One of the critical issues in cluster analysis is to identify the good number of clusters
on a given dataset. Intuitively it may be the number of groups in which the members
within the group are highly homogeneous and the members between the groups are
highly separable. Without a priori knowledge, however, it is not easy to conjecture
the good number of clusters hidden under the data in advance. To handle this issue in
an efficient and systematic way, we introduce the concept of RC as a vehicle to quan-
tify the goodness of the cluster number and use this to estimate the good number of
clusters for given data.

In this section, the definition of RC and its properties are given first, and then pre-
sent the algorithm to estimate the number of clusters using RC criterion in the follow-
ing section.
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2.1 Distribution Matrix

To define the RC, we employ the matrix which captures the underlying characteristics
of given data, called the distribution matrix. Specifically, for the dataset

D={x,,i=1,...,n:X, =(x,,...,x,) € R"}, the distribution matrix @ is defined as

¢l] ¢12 ¢1n ¢(X|’X|) ¢(X1’X2) ¢(X1’X,,)

@ = ¢2l ¢22 ¢2n — ¢(XZ’X[) ¢(X2’Xz) ¢(X2,X”)

¢l1l ¢n2 ¢nn ¢(xn’xl) ¢(Xn,X2) ¢(X”,X”)

where P =P(x;.x;) = exp(—d(x,.,xj)z/20'2) and d(.) is a distance metric. That is, the
element ¢, reflects the normalized distance between two data vectors of (x; , x ;) into
the range [0, 1] by the Gaussian. Thus, the quantity of ¢; becomes closer to 1 when
X, gets closer to x; .Conversely, ¢, becomes closer to 0 when the vector x, gets
farther from x . Here the closeness between the two vectors is relatively defined by

the width ¢ of the Gaussian. For a large o, the Gaussian has a smooth shape incur-
ring less impact of actual distance on the quantity of #; - On the other hand, for a

small o, the Gaussian has a sharp shape incurring more impact of the distance on the
quantity ¢, .

2.2 Definition of RC

Assuming that the dataset D has k (< n) generated clusters, its corresponding RC,

denoted by RC(ﬁk ), is defined as follows.

Definition of RC(D, ): For a given dataset D consisting of n data vectors, RC(D,) is

defined by

l®o-®, I,
i,

RC(ﬁk)zl— where (Bk ZZf:lsiuiviT (D)

Here ﬁk represents the data of k generated clusters by clustering algorithm and @ is

the distribution matrix of D . For @ «» 5, denotes the i" singular values of ®, and
u; and v, denote the i" left and right singular vectors, respectively.

2.3 Properties of RC
The definition of RC(D, ) in Formula (1) can be also described as,
RCD,)=1-2kn )

Sy
where s,,s,,,are the 1* and the (k+1)" singular values, respectively, of @ .
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Proof. Based on Theorem 2.3.1 and Theorem 2.5.3 (see [18] for reference), the 2-

norm of @ is the square root of the largest eigen value of ®"®, which is equal to the

first singular value of @ . Thus, ||<[)||2 =s,. Also, “‘D_&)kH which completes
2

=Spa

the proof. [

Surface of RC

RC

Number of Clusters (k)

Fig. 1(a). The surface of RC simulated with the synthetic data for different choices of number
of clusters k=(5:5:250) and the closeness parameter 6=(0.25:0.25:1.5)
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Fig. 1(b). The contours of RC simulated with the synthetic data for different choices of number
of clusters k=(5:5:250) and the closeness parameter 6=(0.25:0.25:1.5)
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Figures 1 (a) and (b) shows the surface and contours of RC, respectively, which have
been simulated with synthetic data over the (k,0) space. Here k is the number of clus-
ters and 0 is the closeness parameter. As seen in Figure 1(a), a larger number k of
clusters increases the corresponding RC continuously up to reach a certain number of
clusters and then it stays almost flat even with additional number of clusters, although
the saturation point is dependent on the choice of o . Also, in Figure 1(b), it is seen
that to meet a certain level of the RC, a larger ¢ requires smaller number of clusters
while a smaller ¢ requires larger number of clusters. Therefore, it is observed that for
different choices of o, we can have several different k’s satisfying a specific RC
criterion. For example, three possible choices of (k,o ) combinations denoted as (a),
(b), and (c) are illustrated in the contours of Figure 1(b), where all of them have RC =
0.95.

3 Estimation of Number of Clusters Based on RC Criterion

In this section, we address the problem of estimating the good number of clusters for
a given dataset. By using RC, it can be formulated as the problem of identifying the
minimum number of clusters k such that its corresponding RC is not less than the
specified RC having a certain amount of error allowance, say ¢ . Assuming an error
allowance 6 (0< § < 1), it means that we want to find “k” clusters having no less
than RC =1-6 . Thus, in this case, the desired number of target clusters for a given
dataset D should be the smallest k¥ which satisfies the following condition:

RCD,) > 1-6§

By Formula (2), this can be also stated as

L R T
sl
That is,
Sk+l S 5
sl
S S 8,%0
5, > 8% 3)

Now our concern is to find the smallest k satisfying condition (3). Interestingly,
this problem corresponds to the problem of computing the effective rank (also called
&rank) of the distribution matrix @ . Note that for some small € >0 , the &-rank of a

matrix D is defined as

r,= rank(f), £) 4)
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such that

§ 228, >E>S 2028,

1 +1 n

Here £ denotes the effect of noise and rounding errors in the data. Such a rank esti-
mate r, is referred to as the effective rank of the matrix [18]. Putting the condition (3)

into the effective rank definition shown in (4), therefore, the desirable number of clus-
ters (k) can be obtained by estimating the &rank of @ with taking £=s, X0 .

As a consequence, for the distribution matrix ® of a given dataset D, the mini-
mum number k of clusters satisfying a given condition of RC(]5 ,)=1—0 can be
computed by

k = rank(®, £) = rank(®, s, X J) .

4 Experimental Results

Our experiments have been performed with two datasets, a synthetic dataset and a
yeast cell-cycle dataset, for both of which the true numbers of clusters are already
known along with the target clusters. For our analyses, the value of a closeness pa-
rameter ¢ has been heuristically chosen as in the range of 0< ¢ < \/a’/2, where d is the
dimensionality of data vectors. With different choices of error allowance § =0.01,
0.05, 0.1, 0.2, and 0.3, we first identified the minimum number of clusters k to satisfy
a given RC criterion, i.e. 1-§ , for the values of ¢ in the given range, and then gener-
ated the clusters with such a chosen k. The clustering results were then evaluated with
the adjusted rand index as a validation index. Euclidean distance was used as a dis-
tance metric.

4.1 Experiment Methodology

4.1.1 Dataset

Synthetic data: The synthetic dataset was generated based on five different prede-
fined time series patterns, which were partially taken from the nine synthetic time
series patterns studied in [19]. This dataset includes 250 gene expression profiles
consisting of their log expression measures at 10 different time points. For each of the
five predefined patterns, 50 data vectors were uniformly generated by adding Gaus-
sian noise N(0,0.5%) to it.

Yeast cell cycle data: The real dataset used for our experiments is regarding mRNA
transcript levels during the cell cycle of the budding yeast S. cerevisiae. In [20], Cho
et al. monitored the expression levels of 6220 genes over two cell cycles, which were
collected at 17 time points taken at 10 min intervals. Out of these genes, they identi-
fied 416 genes showing the peak at different time points and categorized them into
five phases of cell cycle, viz. early G1, late G1, S, G2, and M phases. Among these,
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by removing such genes that show the peak at more than one phase of cell cycle, 380
genes were identified and used in our experiments, whose expression levels clearly
show the peak at one of the five phases of cell cycle.

4.1.2 Cluster Generation

For cluster generation, we used the seed-based clustering method which has been
recently developed in [21]. The seed-based clustering method consists of two
phases: seed extraction and cluster generation. The first phase of seed extraction is,
given the number k of clusters, to find k good seeds of data vectors by computa-
tional analysis of given data matrix in such a way that the chosen seeds can be dis-
tinguished enough not to be very similar to each other while capturing all the
unique data features (see [21] for more details). Once the seeds are chosen, the
second phase proceeds to generate the clusters by using the chosen seeds as the
representative vectors of potential clusters and assigning each data vector to a clus-
ter with the closest representative vector. That is, by assigning each of the data
vectors included in the dataset to the cluster of which representative vector is the
most similar to the current data vector, the cluster memberships of all the data vec-
tors are identified.

4.1.3 Cluster Assessment
Here clustering results are assessed by adjusted rand index (hereafter ARI), which is a
statistical measure to assess the agreement between two different partitions and has
been used in some previous research on gene expression data analysis [22]. The ad-
justed rand index is defined as in Formula (5), where a value closer to 1 implies that
the two partitions are closer to perfect agreement.

Suppose that U ={u,,...,u,} is the true partition and V={v,,...,v_} is a clustering

result. Then, according to [6], the adjusted rand index is defined as follows:

= (SHEGE())

ni n_/. n, I’lvj n (5_)
=Gl HECEG

where n is the total number of genes in the dataset, n;; is the number of genes that are
in both class u; and cluster v, and n; and n; are the number of genes in class u; and
cluster vj, respectively.

=

4.2 Analysis Results on Synthetic Data

For the synthetic data, we chose the closeness parameter G in the range of
0=(0.25:0.25:1.5). Recall that the value of ¢ is heuristically determined in the range of
O<o< \/d/2, where d is the dimensionality of data vectors. Since the number of condi-
tions in the synthetic data is 10, the range of ¢ was chosen as 0< ¢ < V10/2, that is
1.581. Table 1 shows numerically the RC-based automatically chosen number of



