Cambridge Computer Science Texts ° 15

Information
Representation
~and Manipulation
using Pascal

E.S. PAGE

L.B. WILSON

Cambridge Computer Science Texts + 15

Information
Representation
and Manipulation

using Pascal

E.S. PAGE

Vice-Chancellor
University of Reading

L.B. WILSON

Professor of Computing Science
University of Stirling

CAMBRIDGE UNIVERSITY PRESS

Cambridge
London New York New Rochelle
Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia
© Cambridge University Press 1983

First published 1983

Printed in Great Britain at the University Press, Cambridge

Library of Congress catalogue card number: 82—4505

ISBN 0 521 24954 6 hard covers
ISBN 0 521 27096 0 paperback

British Library cataloguing in publication data

Page, E. S.
Information representation and manipulation using Pascal, -
{ Cambridge computer science texts; 15)
1. Electronic data processing
I. Title II. Wilson, L. B.
001,64'42 QAT6

ISBN 0 521 24954 6
ISBN 0 521 27096 0 Pbk

Preface

For several years a large number of students at universities, poly-
technics and schools have been taught or have taught themselves a
programming language and have written and run programs on a com-
puter that has been conveniently available. Only very little experience
of this kind is required to show that there are other topics which it is
important for 2 computer user to know and the foremost among these
are the ways in which information of different kinds can be represen-
ted and manipulated in the computer. Such material is largely inde-
pendent of the actual computer and there is even a degree of indepen-
dence of the actual programming language. It will, of course, be
easier and more convenient for students to study algorithms in a
language with whose form they are familiar. Since the second

edition of Information Representation and Manipulation in a Computer

was publighed in 1978, there has been a movement away from Algol-
like languages (e.g. Algol 60, Algol W, Algol 68) to Pascal in
British universities. This movement is particularly noticeable in
specialist computing science courses. Even in North America Pascal
has made considerable inroads on the established languages (most
commonly Fortran and PL/I) in the universities. While these changes in
the university world have been very marked, a modest meve to Pascal
has occurred in industry and such a movement seems likely to con-
tinue. It was never intended that the original text would be heavily
dependent upon the programming language used but in view of the
changing situation we felt students would benefit from having the
algorithms in a language familiar to them, especially those needing

a self-teaching text. This text is intended for students on an intro-

ix

ductory course and requires only a knowledge of Pascal, at least as
far as loops, arrays, proceddres and functions, We expect readers
to be able to write and test programs on a computer. Mathematical
demands on the reader have purposely been kept as slight as possible
and only in a few places, where the full analysis of some algorithm
demands it, is more than elementary algebra needed. The main
thread of the book will not be lost if the reader has to skip such
portions. Much can be gained from teaching the more advanced
parts 6f Pascal, particularly records and pointers and recursive
procedures, with the material of this book. The programming
principles and appropriate examples of data structures have been
found to go very well together. Examples, such as adding sparse
matrices or manipulating polynomials, are ideal in conjunction with
records and pointers, whilst trees, searching and sorting contain
many natural examples of recursion which are a much better intro-
duction to this fundamental and important concept than Ackerman's
function or even the more familiar and simpler factorial,

The material in this book runs parallel.’oo that in our earlier
volume. It can be covered in about two dozen 1-hour lectures and
can be gii;len at a quite elementary stage in a student's study of com-
puting. It can form part of the first-year work of undergraduates
intending to specialise to some extent in computing science but it can
just as easily fit into a course at a later stage for those using com-
puting as a tool,spending a smaller proportion of their time on the
subject. The text also contains little that is not required for the
first stage of the British Computer Society's examination.

The changes to material in the earlier volume proved more
extensive than expected and some algorithms (e.g. quicksort) in the
original editions have had to be considerably modified. That we
know will come as no surprise to some of our friends who suggested

changes to these algorithms before now. We are very conscious that

altering algorithms and programs is a very fruitful source of errors.
It is too much to hope that we have entirely avoided all errors in
spite of our striving to do so and we will, of course, be grateful for
any suggested corrections or improvements.

At the end of each of the chapters examples are given to enable
the student to test his understanding of the contents. Some of the
examples arestraightforward exercises of drill, while others are
rather longerAc'p‘lestions taken from university examination papers.
Such a written examination is unlikely to form the whole of the assess-
ment for any course and will normally be supplemented at least by
some programming project but these questions represent a type of
assessment which is usually present at some stage. We have not
indicated the year of the course in which the question has appeéred
because such information would only be meaningful when coupled with the
knowledge of how a particular university arranged its courses. In
the same way, certain questions have been taken from papers testing
the work of some MSc conversion courses. The third typé of
exercise which is included are some suggestions for rather longer
programming projects which might require a month or more of a
student's own time to be devoted to the subjects. Some hints on the
solutions of the examples are given at the end of the book in sufficient
detail, we hope, to indicate how someone who is stuck should proceed
and yet sufficiently tersely to discourage a student from presenting
our hints as his solution should it be set by his lecturer.

We shall not repeat the acknowledgments which were made in
the previous book but we are still indebted to the many mentioned
there. We hope it will be helpful for those who need to learn Pascal,
or to brush up their knowledge t;efore starting on this material, to
have a short list of what we consider to be the best of the recent books
published on PaScal programming and a list is given at the end of this
Preface, [1]-[6]. It is perhaps to be expected that the designer of

Xi

Pascal should write his algorithms with clarity and style and certainly

Wirth's book [7] is a joy and thoroughly recommended. Two other

books which cover data structures using Pascal are those by Coleman

[8] and Tanenbaum and Augenstein [9]

E. S. Page and L. B. Wilson

SELECTED BIBLIOGRAPHY ON PASCAL

[1]

(2]

(3]

[5]

(6]

[7]

[9]

I. R. Wilson and A. M. Addyman: A Practical Introduction to

Pascal, Macmillan Computer Science Series, 1978,
Jim Welsh and John Elder: Introduction to Pascal, Prentice-
Hall, 1979.

W. Findlay and D. A. Watt: Pascal: An Introduction to

Methodical Programming, Pitman, 1978,

G, M. Schneider, S. W, Weingart and D. M. Perlman: An
Introduction to Prog.ramming and Problem Solving with Pascal,

John Wiley, 1978. -

Peter Grogono: Programming in Pascal (revised edition) ,

Addison-Wesley, 1980,
J. S. Rohl and H. J. Barrett: Programming via Pascal,

Cambridge University Press, 1980,
N. Wirth: Algorithms + Data Structures = Programs,

Prentice-Hall, 1976.
Derek Coleman: A Structured Programming Approach to Data,

Macmillan Computer Science Series, 1978,
A. M. Tanenbaum and M. J. Augepstein: Data Struciures
using Pascal, Prentice-Hall, 1981,

xii

Contents

Preface

Chapter 1 Symbols on Paper

1.1 Introduction

1.2 Computer Operations

1.3 Single Symbols

1.4 Descriptions of Sounés and Positions
1.5 Other Representations by Symbols
Examples 1

Chapter 2 Symbols and Codes

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Binary Elements

External Representation

Paper Tape

Error Correction and Detection
Coding Theory

Construction of Optimal Codes
Weighted Codes

Punched Card Codes
Bibliography

Examples 2

Chapter 3 Internal Representation

1
2
3
4
5
6

7

2o @ W o

Units of Storage

Conversion between Scales
Integers: Packed Decimal
Integersg Binary Representation
Fractions: Fixed Binary
Floating Point Numbers
Bibliography

Examples 3

Page

~N O U W N e

12
16
20
22
24
25
25

32
33
36
37
38
39
42
43

Chapter 4 Information Structures 1: Arrays
4,1 Introduction '
4,2 Storage of Arrays

4,3 Applications of Access Tables

4,4 Sparse Arrays

4.5 Bibliography

Examples 4

Chapter 5 Information Structures 2: Linear Lists
5.1 Introduction
5.2 Stacks, Queues and Deques
5.3 Sequential Allocation of Storage
5.4 Linked Allocation of Storage
5

Comparison of Sequential and linked Allocation of
Storage

5.

5.6 Bibliography
Examples 5

Chapter 6 Information Structures 3: Trees

6.1 Introduction and Basic Definitions

6.2 Traversing a Tree

6.3 The Transformation of Trees into Binary Trees
6.4 Tree Representation

6.5 Path Length

6.6 Bibliogravhy

Examples 6

Chapter 7 Searching

7.1 Introduction

7.2 Scanning

7.3 Key Transformation (Scatter Storage) Techniques
7.4 Bibliography '

Examples 7

Chapter 8 Sorting
8.1 Introduction
8.2 Internal Methods
8.3 Merging Methods

vi

50
53
59
61
65
66

74
74
78
85

97
99
100

109-.
115
120
127
143
147
149

162
163
173
183
185

193
196
214

8.4 A Comparison of Sorting Methods
8.5 Bibliography
Examples 8

Notes on the solutions to Examples

Index

221
223
226

235

265

Cvii

1- Symbols on Paper

1.1 INTRODUCTION

The good teacher or lecturer aims to present interesting and
challenging ideas, results and arguments which may be quite complex in
a manner which seems straightforward and simple to the student. In
contrast, the composers of different forms of puzzles and brain teasers
for newspapers and magazines aim to produce formulations of problems
which appear intriguing and perhaps quite difficult but which still allow a
simple solution once the correct method of attack has been discovered.
The ways the problems are presented have a large effect upon the ease
of solving them. The puzzle setter and the teacher have each made a
choice of how their material should be presented - a choice guided by the
effects they hope to achieve. At a more detailed level the notation chosen
for the various quantities occurring in a problem can have a dominating
influence on the ease with which a solution may be found. For example,
some of the early representations of numbers seem to have been devised
primarily for recording amounts of goods; so many cattle, so much corn,
and so on. Different units had symbols of their own and other numbers
were composed by the appropriate repetitions of those symbo6ls. Such a
system of representation does not place too much hindrance in the way of
the operations of addition and subtraction; the symbols themselves can be
repeated or deleted easily and the occasional replacement by equivalent
groups of symbols performed. It is much more difficult to perform multi-
plication and division - operations presumably less frequently required in
the applications that were routine. The same sort of difficulties occur
with the more recent Roman numerals, although some additional com-
plexities appear (and produce the material for a sequence of elementary
programming examples). The hindrances to multiplication and division

become much less once the cypher (a figure 0) is introduced together with

the usual positional notation. For example, in the scale of ten, 3080
represents three thousands and eight tens (3><103+0X102+8X101+0X100).
Even here, however, some operations are performed more easily than
others. In this scale multiplication by ten is an easier operation to per-
form than multiplication by two even, and certainly by seven. Other
scales have their own properties which ease some operations and make
others more difficult.

The same kind of differences in the ease of performing given
operations can be notficed in many areas far removed from arithmetic
or mathematics. For example, given a tuned guitar or banjo and an air
described by the musical score, those with as little musical training as
the authors would be at a loss to produce anything recognizable. If, how-
ever, the grid representation of the fingering is given we might manage
to produce some of the right notes in the right order if not in the right
tempo. Conversely, however, the fingering symbols alone would not make
it easy for even a skilled musician to play the tune on a piano or on a wind
instrument. This theme will constantly recur in different guises through-
out this book. Any representation of information that has been chosen
will govern what operations are easy and convenient to perform and, con-
versely, a representation should be selected taking fully into account the

operations which it is necessary to perform.

1.2 COMPUTER OPERATIONS

The early uses to which computers were put were predominantly
numerical. Ballistic and navigation tables were produced; the numerical
solutions were printed for mathematical problems arising in different
branches of engineering and science. Thus, at first computers tended to
be regarded solely as devices for performing arithmetic operations; how-
ever, it soon came to be recognized that there was a substantial amount
of logical and administrative work contained even in a cdmputer program
for numerical calculations. The contents of a storage location had to be
examined to see if it was positive or negative, perhaps to control a count
of how many times a loop had been obeyed or whether another iteration
was needed. The contents of stores had to be moved to different locations

in the machine; during the moving operation the meaning of the pattern of

electrical signals would be irrelevant - a copy was being made for later
interpretation. Sometimes parts of the contents of a location had to be
abstracted or the contents moved relative to themselves as in a shift
operation. Counts of the different sorts of operations showed that even
in a numerical calculation the proportion of the administrative and non-
numerical operations was high. There was thus a change in emphasis to
cause computers to be regarded as devices for performing operations on
symbols; numerical digits just became special cases of the more general
class of all the symbols represented. We therefore shall look first at
single symbols and then at groups of symbols which are used in several
different applications independent of computers and shall consider the
different sorts of operations that are performed upon them; later we
restrict attention to uses in computers. For our purposes, therefore,
we regard information as being conveyed by symbols which are distin-
guishable one from another and any meaning that they have will be gov-

erned by the rules of the particular context in which they appear.

1.3 SINGLE SYMBOLS

The most commonly used single symbols in the western world are
surely the letters of the English alphabet, a, b, c, ... Notice, however,
that there are many variations possible even in this simple example. In
typescript letters may occur in lower case a, b, ¢, ... or in upper case
A, B, C, ... Inprinting they can occur in a variety of different type

.founts as well; for example, italic, bold, script and many others. The
letters can be different sizes - from the small print often used for the
limiting conditions of guarantees and legal agreements through the sizes
uséd for the headlines of the popular newspapers to the display characters
for advertisements on the hoardings. Notice again that the choices of
representation on the paper have been made in order to try to achieve
one or more ptrincipal aims while satisfying to some extent subsidiary
aims. For example, the 'small print' on a purchase contract can, at
least charitably, be justified by the need to compress many symbols into
a small space, with a subsidiary requirement that the symbols can be read
with normal aids to eyesight - the microdot recording used by spies not

being permitted.

Representations of characters which we recognize as the same in
some respects are produced by very many different means. For example,
from an ordinary typewriter upper case letters are caused by depressing
a case shift key and then striking the key for the letter so that a different-
part of the head of the moving arm strikes the inked ribbon onto the paper.
On some machines (e. g. flexowriters, teleprinters) which produce a
paper tépe output as well as a printed copy, a case shift key has to be
struck which causes a pattern of holes on the paper tape to be produced
as well as placing the machine in the state ready to print letters in upper
case when the keys are struck. In some methods of printing both upper
and lower case letters are represented uniquely by individual keys.

The familiar decimal digits, 0, 1, 2 ... 9 appear on most key-
boards and are adequate for representing numbers in scales of 10 or
less but need to be supplemented for scales with higher radices. For
example, hexadecimal numbers, i.e. those in the scale of 16, need
symbols to represent the decimal 10, 11, 12, 13, 14 and 15; by one
convention these have been taken to be A, B, C, D, E, F, so that the
hexadecimal A5 is 165 in the scale of ten. In this case it is quite usual
for some of the keys to be used for two different purposes - BED repre-
sents both a hexadecimal number and an English word meaning something
to sleep in or plant flowers in. It is worth noticing, however, that we do
not need to go to exotic scales of notation to find examples of double usage
of symbols. Even on some common keyboards not all the decimal digifs
are available; for example, on many typewriter keyboards the digits zero
and one are absent - the typist is supposed to produce them by using the
upper case O (i. e. the letter between N and P in the alphabet) and
lower case 'el’, a substitution which produces errors often noticed in the
output from inexpert typists. i

Restrictions on the size of keyboards lead to the omission of
some needed symbols and so to tricks to avoid them. Consider the
mathematical signs + - X + / > = = #. The first two signs are usually
available but multiplication might have to be indicated by the letters x
or X - for example, on some typewriters. Other signs like # might
need to be constructed from an over-printing of = by /; yet others

like = may have to be replaced by some combination like . GE. Some

character sets require such a construction for a large number of their
symbols; many of the operators of the Iverson notation in his language
APL requiré‘more than one key stroke. In all these cases we notice
that some choice has been made of what set of characters should be
represented by a single key, how big that set should be, how other
characters may be represented (if at all); a good choice has regard to

the most frequent or most important uses.

1.4 DESCRIPTIONS OF SOUNDS AND POSITIONS

Not all phenomena are described most conveniently by alphabetical
or numerical symbols for the operations which have to be performed.
Descriptions by these symbols may take up too much space or too much
time, or they may be less readily distinguished than a suitable stylized
two-dimensional picture. A secretary taking dictation from someone
speaking only moderately fluently will record the words spoken in one
of the shorthand systems that have been developed. Two of the most
common, Pitman's and Gregg's, represent the sounds of the words rather
than their spelling. A number of basic outlines written in a few positions
relative to the horizontal lines on the paper are combined to form all the
words of the language. The operation of encoding by a skillful shorthand-
writer can be fast enough to ;ecord what even quick speakers are saying,
and the systems have surely" 1bfeen designed with this primarily in mind.
Decoding, accompanied as it usually is by some form of transcription on
a typewriter, need not be quite as quick or even in most cases quite as
accurate if the context or the secretary's memory can afford some clue
in the case of a slightly inaccurate written outline. The ordinary repre-
sentation of a music score as well as the one quoted earlier for a banjo
or guitar, uses a two-dimensional display on the printed page. In these
cases the operations that need to be performed quickly are the recognition
of the sounds required and what has to be done to produce them from an
instrument. The converse construction, printed representation produced
from e sounds, need not normally be performed at the same speed and
the notation is not well adapted for this purpose. In some other spheres

Uit is necessary to describe positions in two or three dimensions, for

example, in ballet or modern dance routines. In both of these cases

essentially two-dimensional forms of representation on the paper have
been devised but because of the nature of the activity are perhaps more
suited to recording a sequence of movements rather than to assist their

execution at the desired rate.

1.5 OTHER REPRESENTATIONS BY SYMBOLS

The previous sections have given examples of some representations
on the written or printed page and have focussed attention on properties
of the representations. Paper and printing are, of course, not the only
means of recording or transmitting information. The deaf and dumb
alphabet, formed from positions of the hands and fingers, gives another
representation of the alphabet plus a small number of words and phrases.
Another visual representation of the alphabet is given by semaphore which
uses the positions of flags held in the hands to describe the letters and
digits. A much more extensive system for conveying messages from a
previously determined list has been constructed for ships at sea which
uses a variety of devices including flags of various colours. Sight is only
one of the senses available for the recognition of information. Braivlle
notation is recognized by touch, and the Morse Code in one of its varieties
typically uses long or short sounds or long or short flashes of light in
patterns to represent the printed symbols. Even smell gives some infor-
mation, especially to animals. All these representations and the ones
mentioned earlier allow some operations to be performed more easily
than others. If the more awkward operations have to be performed rela-
tively infrequently it may be worthwhile retaining the representation
because it is familiar. It must, however, be recognized that a decision
about thé choice of a representation needs to be made, and the consequences
of the choice contemplated and weighed against alternatives. .The examples
quoted are naturally those which have stood the test of considerable use
and have proved their suitability under the most frequent types of use.
We shall see later that some sort of standardization is appearing for the
representation within computers of the most common characters, but
whenever more unusual applications appear a choice may have to be made

ab initio.

EXAMPLES 1

[1.1] For any keyboards producing a hard copy with which you are
familiar, list:

(a) the single symbols in the printed representation which
require more than one key stroke to proluce them;

(b) those keys which represent different printed symbols
" according to context (as with the lower case 'el' quoted in section 1. 2);

(c) those keys which produce no printing.

[1.2] Suggest principal and subsidiary aims that might be involved in a

choice of:
(a) type size for newspaper headlines;
(b) dimensions for microfilm or microfiche records of

research articles;
(c) dimensions for a microdot;
(d) foreign characters for certain scientific or mathematical

quantities (e. g. y-rays, 7 = 3.14159 ...).

