TWO-PHASE FLOW
- EHEAT TRANSFER
:POWER=PROCESS

INDUSTRIES

A E Bergles
J. G. Oolller
~ J.M.Delhaye
| G.F He\mtt
F. Mayinger



5 8263568
TWO-PHASE FLOW
AND HEAT TRANSFER
IN THE POWER
AND PROCESS
INDUSTRIES

A. E. Bergles

lowa State University

Ames, lowa, U.S.A. ”mm" ’l ’l

J. G. Collier WY
Atomic Energy Technical Unit

U. K. Atomic Energy Authority
Harwell, England

J.M. Delhaye

Centre d’Etudes Nucléaires
Grenoble, France

G. F. Hewitt

Engineering Sciences Division and HTFS
U. K. Atomic Energy Authority
Harwell Laboratory, England

il

F. Mayinger

Institut fir Verfahrenstechnik
Technische Universitit
Hannover, West Germany

°HEMISPHERE PUBLISHING CORPORATION
Washington New York London



o
=
£
e
oD
17
s ]

TWO-PHASE FLOW AND HEAT TRANSFER IN THE POWER
AND PROCESS INDUSTRIES

Copyright © 1981 by Hemisphere Publishing Corporation. All rights
reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of the publisher.

1234567890 BRBR 89876543210

Library of Congress Cataloging in Publication Data

Library of Congress Cataloging in Publication Data
Main entry under title:

Two-phase flow and heat transfer in the power and
process industries.

Includes bibliographies and index.
1. Two-phase flow. 2. Heat—Transmission.
3. Power-plants—Equipment and supplies. 4. Chemical
plants—Equipment and supplies. |. Bergles, A. E.,
date
TA357.794 621.402'2 80-22025
ISBN 0-89116-197-X



Preface

This book grew out of discussions held during the NATO Advanced
Study Institute on Two-Phase Flows and Heat Transfer held in
Istanbul, Turkey in 1976. At that time a short course was proposed
which would emphasize not only the fundamentals of two-phase flow
and heat transfer but also industrial applications. Under co-
sponsorship of Hemisphere Publishing Corporation and Brookhaven
National Laboratory, "Two-Phase Flow and Heat Transfer in the Power
and Process Industries" was presented by AEB, JGC, JMD, and GFH in
October 1978 at BNL in Upton, New York. In March 1980, FM joined
forces to present a revised version of the course in Hannover,
under co-sponsorship of Hemisphere and Universitit Hannover.

An extensive series of lecture notes was developed for these
courses. After consultation with Hemisphere Publishing Corporation,
it was decided to publish the latest version of these notes as a
book. While recognizing that this book is part of the continued
"exponential" growth of literature on this subject, it is felt that
the material will be of interest and value to students, researchers,
and practioners. The collection of material appears to be unique
in that a rather complete overview is presented, ranging from funda-
mental methods of analysis to practical plant design and operational
safety.

Since all of us are extensively involved in teaching and
writing on two-phase flow and heat transfer, it is inevitable that
we have drawn on material which has been presented elsewhere. This
includes lectures at several NATO Advanced Study Institutes, Von
Karman Institute for Fluid Dynamics Lecture Series, International
Heat Transfer Conferences, and Multi-Phase Flow and Heat Transfer
Symposium-Workshops - all of which have been Published by Hemisphere.
Additionally, some of the material by JGC is based on Foxrced
Convection Boiling and Condensation, published by McGraw-Hill (UK) .
The material by GFH is partially derived from Annual Two-Phase FlLow
(Pergamon Press), Two-Phase FLow and Heat Transfer (Oxford
University Press), and Measurement of Two-Phase FLow Parameters
(Academic Press).

AEB wishes to acknowledge the support given for this project
by the Alexander von Humboldt Foundation and the Institut fur
Verfahrenstechnik der Universitat Hannover during 1979-80.

The material in this book was typed by Mrs. Barbara Granito,
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and we would like to record our thanks to her for her careful and
patient work. Our thanks are also due to Mr. William Begell,
President of Hemisphere Publishing Corporation, and his staff for
their support in this endeavor. We must also thank the students
in our courses whose intelligent comments and questions have led
to the better development of this material.

Finally, we would like to thank our wives (Penny, Ellen,
France, Shirley, and Franziska) who bear so nobly their lonely
lives as "two-phase flow widows".

A E Bergles
J G Collier
J M Delhaye
G F Hewitt
F Mayinger
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Chapter 1

Two-Phase Flow Patterns
J. M. DELHAYE

1.1 . Introduction

A two-phase mixture flowing in a pipe can exhibit several
interfacial geometries (bubbles, slugs, film,...). But this
geometry is not always clearly defined, which prevents the flow
patterns from being precisely and objectively described.

In single-phase flow, laminar and turbulent flows are
differently modelled. Laminar flows can be described by instantane-
ous quantities, the solutions of the Navier-Stokes equations,
whereas turbulent flows are described by time- or statistical-
averaged quantities which are the solutions of a system involving
the Reynolds equations and some closure equations.

Likewise, in two-phase flows, the flow patterns must be known
in order to model the physical phenomenon as closely as possible.
It is obviously impossible to describe bubbly flows and annular
flows with a good accuracy by means of the same model. It is far
better to adopt two different models, each one fitting the individual
flow description. Nevertheless, this approach is still difficult
because of the transition zone between two flow patterns and the
lack of physical knowledge to describe these buffer zones.

In addition to the random character of each flow configuration,
two-phase flows are never fully-developed. 1In fact the gas phase
expands due to the pressure drop along the pipe. This may lead to
a modification of the flow structure such as an evolution from
bubbly flow to slug flow. The flow pattern depends also upon the
singularities occurring along the pipes such as bends, junctions,
air-injection devices, etc...

The parameters which govern the occurrence of a given flow
configuration are numerous and it seems hopeless to try to represent
all the transitions on a two-dimensional flow chart. Among these
various parameters, one can select, (1) the volumetric flow-rates
of each phase, (2) the pressure, (3) the heat flux at the wall,

(4) the densities and viscosities of each phase, (5) the surface
tension, (6) the pipe geometry, (7) the pipe characteristic
dimension, (8) the angle of the pipe with respect to the horizontal
plane, (9) the flow direction (upward, downward, cocurrent,
countercurrent), (10) the inlet length, (11) the phase-injection
devices. The last two points are of the utmost importance and one
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always has to keep in mind that a flow map is proposed for given
conditions and that it must be used for the same conditions.

The purpose of this chapter is to describe the different
configurations of gas-liquid pipe flows, to examine the transition
phenomena between the flow patterns and to propose a set of flow
maps allowing the determination of the flow pattern, given the
system parameters. This chapter starts with the definitions of
the basic quantities describing two-phase pipe flows and with a
survey of the experimental techniques which can be used to
recognize the flow structure.

1.2 Describing Parameters of Two-Phase Pipe Flows

Given the fluctuating character of two-phase flows, averaging
operators have to be introduced. These operators which act on
space or time domains are studied in detail in Chapter 2 of this
book. Only definitions and fundamental properties of these
operators are given hereunder.

1.2.17 Phase Density Function

The presence or absence of phase k(k=1,2) at a given point x
and a given time t is characterized by the unit value (or zero
value) of a phase density function Xk (x,t) defined as follows:

1 if point x pertains to phase k
A

Xk(x,t)z
0 if point x does not pertain to phase k

(124)

The phase density function is a binary function analogous to the
intermittency function used in single-phase flow.

1.2.2 Instantaneous Space-Averaging Operators

Instantaneous field variables may be averaged over a line, an
area or a volume, i.e. over a n-dimension domain (n=1,2,3 for a
segment, an area or a volume), For instance, in a pipe flow, the
field variables can be averaged over a diameter, a chord, a plane
cross section or a finite control volume. At a given time, this
n-dimension domain D, can be divided into two sub-domains Dyp
pertaining to each phase (k=1,2),

Consequently two different insfanZaneous space-averaging operators

are introduced,
Dn n *

Dn

>

f 4,



and

The instantaneous space-§
over Dy of the phase densi

This definition leads dire
fraction,
(i) over a segment

Req

L

—r

/
k x=1,2

where Lk is the cumulated

(ii) over a surface,

(1.3)

action Rkp is defined as the average
ty function Xy (x,t),

(1.4)

ctly to the usual instantaneous space-

(1.5)

length of the segments occupied by phase

R,=A4A /7 A (1.6)
k2 k k=1,2 k
where Ap is the cumulated area occupied by phase k
(iii) over a volume,
R.,=V /7§ Vv (1.7)
k3 k k=1,2 k
where Vk is the volume occupied by phase k.
The instantaneous volumetric fLowrate Qx through a pipe cross
section of area A is defined by,
Q 2 w, dA = A R <w, > (1.8)
k k k2 k72 )
B

where wyp is the axial component of the velocity of phase k.

The <{nstantaneous mass §Lowrate Mg is given by,

M

k (1.9)

A -
=/ PRWidA = A R, <Py W >,
A

where N is the density of phase k.
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1.2.3 Local Time-Averaging Operator

Local field variables can be averaged over a time interval
[t-T/2; t+T/2]. As for single-phase turbulent flow, this time
interval of magnitude T must be chosen large enough compared with
the time scale of the turbulence fluctuations, and small enough
compared with the time scale of the overall flow fluctuations.
This is not always possible and a thorough discussion of this
delicate question can be found in papers by Delhaye and Achard
(1977, 1978).

If we consider a given point x in a two-phase flow, phase k
passes this point intermittently, and a field variable fx (x,t)
associated with phase k is a piecewise continuous function.
Denoting by Tk (x,t) the cumulated residence time of phase k within
the interval T, we can define two different focal time-averaging

operators,
1 /
L _ar (1.:10)
T[]

e

and

T
= ar (1.11)
L

[T ]

[1>2

The Local time-fraction ok is defined as the average over T of the
phase density function Xy s

S Tk(x,t)
Otk(X,t) = Xk(x,t) = —T— (1.12)

1.2.4 Commutativity of Averagding Operators

Considering all the definitions given previously, one can
easily derive the following identity,

—X

Ry Thes = Yo 8 % (1.13)

A particular case for equation (1.13) is obtained by taking ka1,
which leads to

Ben = Toyty (1.14)
Note that identities (1.13) and (1.14) are valid for segments
(n=1), areas (n=2) or volumes (n=3).

As a consequence, the time-averaged volumetric and mass flow-
rates can be expressed in the following ways,
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. — —x

Q = B Rypsw >3 Bofown ok (1.14
— —— X

M = A R <ppw,>, = A {akpkwk %2 (1.16)

1.2.5 Qualities

The mass-velocity G is defined by,

Il >
==

G (1. 07)

where M is the time-averaged total mass flowrate.

The (true) quafity x is defined as the ratio of the gas mass-flow-
rate to the total mass-flowrate,

"% Y%
M. + M M

(1.18)

It is currently impossible to measure or to calculate with a high
precision the guality of a liquid-vapor mixture flowing in a heated
channel and withstanding a phase change. Nevertheless, a fictitious
quality, the so-called equifibrium or thermodynamic quality, can

be calculated by assuming that both phases are flowing under
saturation conditions, i.e. that their temperatures are equal to

the saturation temperature corresponding to their common pressure.

1.2.6 Volumetric Quantities

The volumetric quality B is defined as the ratio of the gas
volumetric flowrate to the total volumetric flowrate,

s _%

Ty

B (1.179)

The Local volumetric fLux jx is a local time-averaged quantity
defined by,

_ —X
k T 9% Wi (1.20)

Its area-average Jx over the total cross section area A is a space/
time-averaged quantity called the superficial velocity. This
quantity is defined by,

jk 4 *kak*Z iz *jk*Z (1.21)



