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Preface

The problem of turbulence and coherent structures is of key importance in
many fields of science and engineering. It is an area which is vigorously
researched across a diverse range of disciplines such as theoretical physics,
oceanography, atmospheric science, magnetically confined plasma, nonlin-
ear optics, etc. Modern studies in turbulence and coherent structures are
based on a variety of theoretical concepts, numerical simulation techniques
and experimental methods, which cannot be reviewed effectively by a single
expert. The main goal of these lecture notes is to introduce state-of-the-
art turbulence research in a variety of approaches (theoretical, numerical
simulations and experiments) and applications (fluids, plasmas, geophysics,
nonlinear optical media) by several experts.

This book is based on the lectures delivered at the 19th Canberra Inter-
national Physics Summer School held at the Australian National University
in Canberra (Australia) from 16-20 January 2006. The Summer School was
sponsored by the Australian Research Council’s Complex Open Systems
Research Network (COSNet).

The lecturers aimed at (1) giving a smooth introduction to a subject to
readers who are not familiar with the field, while (2) reviewing the most
recent advances in the area. This collection of lectures will provide a useful
review for both postgraduate students and researchers new to the advance-
ments in this field, as well as specialists seeking to expand their knowledge
across different areas of turbulence research.

The material covered in this book includes introductions to the theory
of developed turbulence (G. Falkovich) and statistical and renormalization
methods (D. McComb). The role of turbulence in ocean energy balance
is addressed in a review by H. Dijkstra. A comprehensive introduction to
the complex area of the theory of turbulence in plasma (J. Krommes) is
complemented by a review of experimental methods in plasma turbulence
(M. Shats and H. Xia). An introduction to the main ideas and modern
capabilities of numerical simulation of turbulence is given by J. Jimenez.



vi Preface

Experimental methods in fluid turbulence studies are illustrated in the lec-
tures by J. Soria describing the particle image velocimetry. Finally, the
relatively new field of the physics of vortex flows in optical fields is reviewed
by A. Desyatnikov.

The Summer School in Canberra was accompanied by a workshop on
the same topic. The Workshop Proceedings (editors J. Denier and J. Fred-
eriksen) will also be published by World Scientific under the same title
as these Lecture Notes (“Turbulence and Coherent Structures in Fluids,
Plasmas and Nonlincar Media”). References in this book to the Workshop
papers are given as “I. Jones, Workshop Proceedings”.

Michael Shats
Convenor of the 19th Canberra International Physics Summer School
Canberra, August 2006
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Chapter 1

Introduction to Developed Turbulence

Gregory Falkovich

Weizmann Institute of Science, Rehovot 76100 Israel
E-mail: gregory.falkovich@Qweizmann.ac.il
Homepage: http://www.weizmann.ac.il/home/fnfal/

This is a short course on developed turbulence, weak and strong. The
main emphasis is on fundamental properties like universality and sym-
metries. Two main notions are explained: i) fluxes of dynamical integrals
of motion, ii) statistical integrals of motion.

Contents

1.1. Introduction . . . . . . ... 1
1.2, Weak wave turbulence . . . . . . .. .. ... 3
1.3. Strong wave turbulence . . . . . .. ... ... 7
1.4. Incompressible turbulence . . . . . . . . .. ... ... ... ... 10
1.5. Zero modes and anomalous scaling . . . . . ... . ... ... ... ... ... 15
Bibliography . . . . . ... 19

1.1. Introduction

Turbulence is a state of a physical system with many interacting degrees of
freedom deviated far from equilibrium. This state is irregular both in time
and in space. Turbulence can be maintained by some external influence or it
can be decaying turbulence on the way of relaxation to equilibrium. As the
term suggests, it first appeared in fluid mechanics and was later generalized
for far-from-equilibrium states in solids and plasma. For example, obstacle
of size L placed into fluid moving with velocity V provides for a turbulent
wake if the Reynolds number is large: Re = VL/v > 1. Here v is the
kinematic viscosity. At large Re, flow perturbations produced at the scale
L have their viscous dissipation small compared to the nonlinear effects.
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Nonlinearity produces motions of smaller and smaller scales until viscous
dissipation stops this at a scale much smaller than L so that there is a
wide (so-called inertial) interval of scales where viscosity is negligible and
nonlinearity dominates. Another example is the system of waves excited
on a fluid surface by wind or moving bodies and in plasma and solids by
external clectromagnetic fields. The state of such system is called wave
turbulence when the wavelength of the waves excited strongly differs from
the wavelength of the waves that effectively dissipate. Nonlinear interaction
excites waves in the interval of wavelengths (called transparency window,
or inertial interval) between the injection and dissipation scales.

The ensuing complicated and irregular dynamics calls for a statistical
description based on averaging either over regions of space or intervals of
time. Here we focus on a single-time statistics of steady turbulence that is
on the spatial structure of fluctuations. Because of the conceptual simplicity
of the inertial range, it is natural to ask if our expectation of universality—
that is, freedom from the details of external forcing and internal friction—is
true at the level of a physical law. Another facet of the universality problem
concerns features that are common to different turbulent systems. This
quest for universality is motivated by the hope of being able to distinguish
general principles that govern far-from-equilibrium systems, similar in scope
to the variational principles that govern thermal equilibrium.

Constraints on dynamics are imposed by conservation laws, and there-
fore conserved quantities must play an essential role in turbulence. The
conservation laws are broken by pumping and dissipation, but both factors
do not act in the inertial interval. For example, in the incompressible tur-
bulence, the kinetic energy is pumped by external forcing and is dissipated
by viscosity. According to the idea suggested by Richardson in 1921, the ki-
netic energy flows throughout the inertial interval of scales in a cascade-like
process. The cascade idea explains the basic macroscopic manifestation of
turbulence: the rate of dissipation of the dynamical integral of motion has a
finite limit when the dissipation coefficient tends to zero. For example, the
mean rate of the viscous energy dissipation does not depend on viscosity
at large Reynolds numbers. That means that a symmetry of the inviscid
equation (here, time-reversal invariance) is broken by the presence of the
viscous term, even though the latter might have been expected to become
negligible in the limit Re — oo.

The cascade idea fixes only the mean flux of the respective integral of
motion demanding it to be constant across the inertial interval of scales.
We shall see that flux constancy determines the system completely only
for weakly nonlinear system (where the statistics is close to Gaussian).
To describe an entire turbulence statistics of strongly interacting systems,
one has to solve problems on a case-by-case basis with most cases still
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unsolved. Particularly difficult (and interesting) are the cases with broken
scale invariance where knowledge of flux does not allow one to predict even
the order of magnitude of high moments. We describe the new concept of
statistical integrals of motion which allows for the description of system
with broken scale invariance.

1.2. Weak wave turbulence

From a theoretical point of view, the simplest case is the turbulence of
weakly interacting waves. Examples include waves on the water surface,
waves in plasma with and without magnetic field, spin waves in magnetics.
We assume spatial homogeneity and denote ax the amplitude of the wave
with the wavevector k. When the amplitude is small, it satisfies the linear
equation

Oay /Ot = —iwgag + fr(t) — vak . (1.1)

Here the dispersion law wy describes wave propagation, ~ is the linear
damping rate and fi describes pumping. For the linear system, ay is dif-
ferent from zero only in the regions of k-space where fi is nonzero. To
describe wave turbulence which involves wavenumbers outside the pump-
ing region, one must account for the interaction between different waves.
Considering for a moment wave system as closed (that is, without exter-
nal pumping and dissipation) one can describe it as a Hamiltonian system
using wave amplitudes as normal canonical variables (see, for instance, the
monograph!). At small amplitudes, the Hamiltonian can be written as an
expansion over aj, where the second-order term describes non-interacting
waves and high-order terms determine the interaction:

H= /wk|ak|2dk (1.2)
+ /(Vlggala;af; + C‘.C.)(S(k] — k2 — k';) dkldkzdk,j + O((l4) 3

Here Vi93 = V(k1, ko, k3) is the interaction vertex and c.c. means complex
conjugation. In the Hamiltonian expansion, we presume every subsequent
term smaller than the previous one, in particular, & = |kakak|kd Jwi < 1.
Wave turbulence that satisfies this condition is called weak turbulence.
Here d is the space dimensionality which can be 1, 2 or 3.

The dynamic equation which accounts for pumping, damping, wave
propagation and interaction has thus the following form:

dap /0t = —i6H [daj, + fi(t) — ywa - (1.3)
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It is likely that the statistics of the weak turbulence at k > kj is close to
Gaussian for wide classes of pumping statistics (that has not been shown
rigorously though). This is definitely the case for the random force with
the statistics not very much different from Gaussian. We consider here and
below a pumping by a Gaussian random force statistically isotropic and
homogeneous in space, and white in time:

(@) fi (1) = F(k)s(k + K)ot —1') . (1.4)

Angular brackets mean spatial average. We assume 7y, < wy, (for waves to
be well defined) and that F(k) is nonzero only around some k.

Since the dynamic equation (1.3) contains a quadratic nonlinearity then
the statistical description in terms of moments encounters the closure prob-
lem: the time derivative of the second moment is expressed via the third
one, the time derivative of the third moment ix expressed via the fourth
one etc. Fortunately, weak turbulence in the inertial interval is expected to
have the statistics close to Gaussian so one can express the fourth moment
as the product of two second ones. As a result one gets a closed equation
for the single-time pair correlation function' (axar) = nkd(k +k’)

ony, 3
73 = Fp — veng +IIE‘ )’
I;(cg) = /(Ukw — Uikz — Uz ) dkydks, (1.5)

Ujaz = 7T[TL27Z3 — 77,1(”2 + n3)] |V123|25(k1 — ko — k3)5(w1 — Wy — wg) ;

It is called kinetic equation for waves. The collision integral [ ,23) results
from the cubic terms in the Hamiltonian i.e. from the quadratic terms in
the equations for amplitudes. It can be interpreted as describing three-wave
interactions: the first term in the integral (1.5) corresponds to a decay of
a given wave while the second and third ones correspond to a confluence
with other wave.

One can estimate from (1.5) the inverse time of nonlinear interaction
at a given k as |V (k, k, k)|>n(k)k?/w(k). We define kq as the wavenumber
where this inverse time is comparable to y(k) and assume that nonlinearity
dominates over dissipation at k < k4. As has been noted, wave turbu-
lence appears when there is a wide (inertial) interval of scales where both
pumping and damping are negligible, which requires k4 > kj, the condition
analogous to Re > 1. This is schematically shown in Fig. 1.

The presence of frequency delta-function in I ,(63) means that in the
first order of perturbation theory in wave interaction we account only
for resonant processes which conserve the quadratic part of the energy
E = [wgnidk = [ Epdk. For the cascade picture to be valid, the col-
lision integral has to converge in the inertial interval which means that




Introduction to Developed Turbulence 5

energy exchange is small between motions of vastly different scales, the
property called interaction locality in k-space. Consider now a statistical
steady state established under the action of pumping and dissipation. Let
us multiply (1.5) by wy, and integrate it over either interior or exterior of
the ball with radius k. Taking ks < k < kg, one sees that the energy flux
through any spherical surface (€2 is a solid angle), is constant in the inertial
interval and is equal to the energy production/dissipation rate e:

k .
Py :/ kdfldk/dnwkfkﬁf‘) = /kak dk:/ykEkdk:e. (1.6)
JO «

This (integral) equation determines ny. Let us assume now that the

Nk

Py

inertial interval :

E 5
: k

Fig. 1.1. A schematic picture of the cascade.

medium (characterized by the Hamiltonian coefficients) can be considered
isotropic at the scales in the inertial interval. In addition, for scales much
larger or much smaller than a typical scale (like Debye radius in plasma or
the depth of the water) the medium is usually scale invariant: w(k) = ck®
and |V (k,k1,ko)? = V@k*>"x (k1 /k,ka/k) with x ~ 1. Remind that we
presumed statistically isotropic force. In this case, the pair correlation func-
tion that describes a steady cascade is also isotropic and scale invariant:

ng ~ €2y gme (1.7)

One can show that (1.7), called Zakharov spectrum, turns 7 ,(63) into zero.!
If the dispersion relation w(k) does not allow for the resonance condition
w(k1) + w(ke) = w(ky + ka|) then the three-wave collision integral is zero
and one has to account for four-wave scattering which is always resonant.
In other words, whatever the w(k) relationship is, one can always find four
wavevectors that satisfy w(ki)+w(ks) = w(ks)+w(ks) and k1 +ko = kg+ky.
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The collision integral that describes scattering,
1124) = g / |Th123|? [nQn;;(nl + ng) — ning(ne + n;;)]d(k +k; — ks —k3)
X(S(Wk +wp —wy — (.02) dkldedk'; 5 (18)

conserves the energy and the wave action N = [njdk (the number of
waves). Pumping generally provides for an input of both F and N. If there
are two inertial intervals (at k > k; and k < kj), then there should be
two cascades. Indeed, if w(k) grows with &, then the absorbtion of a finite
amount of E at k; — oo corresponds to an absorption of an infinitely small
N. It is thus clear that the flux of N has to go in the opposite direction,
that is, to large scales. A so-called inverse cascade with the constant flux
of N can thus be realized at k¥ < ky. A sink at small k& can be provided
by a wall friction in the container or by long waves leaving the turbulent
region in open spaces (like in sea storms). The collision integral I ,53) involves
products of two ny, so that the flux constancy requires Ej o €'/2, while
for the four-wave case I ,i4) o n® gives Ej o« €'/3. In many cases (when
there is a complete self-similarity) this knowledge is sufficient to obtain the
scaling of EFj, from a dimensional reasoning without actually calculating V/
and 7. For example, short waves on a deep water are characterized by
the surface tension o and density p, so the dispersion relation must be
wi ~ +/ok3/p, which allows for the three-wave resonance, and thus Ej, ~
€'/2(po)'/*k=7/%. For long waves on a deep water, the surface-restoring
force is dominated by gravity so that the gravity acceleration g replaces
o as a defining parameter and wy ~ /gk. Such dispersion law does not
allow for the three-wave resonance so that the dominant interaction is four-
wave scattering which permits two cascades. The direct energy cascade
corresponds to Ep ~ €'/3p?/3g1/2=5/2 The inverse cascade carries the
flux of N which we denote @Q, it has the dimensionality [Q] = [¢]/[wx] and
corresponds to Ej, ~ Q/3p2/3¢2/3k=7/3,

ny

N T

Fig. 1.2. Two cascades under four-wave interaction.

Since the statistics of weak turbulence is near Gaussian, it is completely
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determined by the pair correlation function, which is in turn determined
by the respective flux. We thus conclude that weak turbulence is universal
in the inertial interval.

1.3. Strong wave turbulence

One cannot treat wave turbulence as a set of weakly interacting waves when
the wave amplitudes are big enough (so that & > 1) and also in a particular
case of linear (acoustic) dispersion relation w(k) = ck for arbitrarily small
amplitudes. Indeed, there is no dispersion of wave velocity for acoustic
waves so that waves moving in the same direction interact strongly and
produce shock waves when viscosity is small. Formally, there is a singu-
larity due to coinciding arguments of delta-functions in (1.5) (and in the
higher terms of perturbation expansion for dny, /0t), which is thus invalid at
however small amplitudes. Still, some features of the statistics of acoustic
turbulence can be understood even without closed description. We discuss
this in a one-dimensional case which pertains, for instance, to sound propa-
gating in long pipes. Since weak shocks are stable with respect to transverse
perturbations,? quasi one-dimensional perturbations may propagate in 2D
and 3D as well. In the frame of reference moving with the sound velocity,
the weakly compressible 1d flows (u < ¢) are described by the Burgers

equation®3
Up + Uy — Vigy = 0 . (1.9)
Burgers equation has a propagating shock-wave solution u = 20{1 +

explv(z — vt)/v]} " with the energy dissipation rate v [u2dz indepen-
dent of v. The shock width v/v is a dissipative scale and we shall consider
acoustic turbulence produced by a pumping correlated on much larger scales
(for example, pumping a pipe from one end by frequencies much less than
cv/v). After some time, it will develop shocks at random positions. Here
we consider the single-time statistics of the Galilean invariant velocity dif-
ference du(x,t) = u(x,t) — u(0,¢). The moments of du are called structure
Junctions Sy, (z,t) = ([u(x,t) —u(0,t)]"). Quadratic nonlinearity makes the
time derivative of the second moment to be expressed via the third one:
0S5 0Ss %S,

S S

Here € = v(u?) is the mean energy dissipation rate. Equation (1.10) de-
scribes both a free decay (then e depends on t) and the case of a permanently
acting pumping which generates turbulence statistically steady at scales less
than the pumping length. In the first case, 952/t ~ Syu/L < € ~ ud /L
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(where L is a typical distance between shocks) while in the second case
D83 /0t = 0 so that S3 = 12ex + v0S2/0x.

Consider now a limit v — 0 at fixed = (and ¢ for decaying turbulence).
Shock dissipation provides for a finite limit of € at v — 0, then

S3 = —12ex . (1.11)

This formula is a direct analog of (1.6). Indeed, the Fourier transform
of (1.10) describes the energy density Ep = (Jug|*)/2 which satisfies the
equation (0; — vk?)Ey = —0Py/0k where the k-space flux is

k 00
P, = / dk'/ dxSs(x)k' sin(k'z)/24 .
0 —o0

It is thus the flux constancy that fixes Ss(x) which is universal, i.e., it
is determined solely by ¢ and depends neither on the initial statistics of
decay nor on the pumping for steady turbulence. On the contrary, other
structure functions S, (z) are not given by (ex)™3. Indeed, the scaling
of the structure functions can be readily understood for any dilute set of
shocks (when shocks do not cluster in space) which seems to be the case
both for smooth initial conditions and a large-scale pumping in Burgers
turbulence. In this case, S,(z) ~ Cplz|™ + C}|z|, where the first term
comes from the regular (smooth) parts of the velocity (the right z-interval
in Fig. 1.3.), while the second term comes from O(x) probability to have
a shock in the interval z. The scaling exponents, &, = dIn S, /dInz, thus
behave as follows: &, = n for n < 1 and &, = 1 for n > 1. That means
that the probability density function (PDF) of the velocity difference in the
inertial interval P(du,x) is not scale-invariant, i.e., the function of the re-
scaled velocity difference du/z® cannot be made scale-independent for any
a. As one goes to smaller scales, the low-order moments decrease faster
than the high-order ones, that means that the smaller the scale, the more
probable are large fluctuations. In other words, the level of fluctuations
increases with the resolution. When the scaling exponents &,, do not lie on
a straight line, this is called an anomalous scaling since it is related again
to the symmetry (scale invariance) of the PDF broken by pumping and not
restored even when z/L — 0. As an alternative to the description in terms
of structures (shocks), one can relate the anomalous scaling in Burgers
turbulence to additional integrals of motion. Indeed, the integrals F, =
J u?™dxz/2 are all conserved by the inviscid Burgers equation. Any shock
dissipates the finite amount of E,, in the limit of v — 0, so that similarly to
(1.11), one denotes (F,) = €, and obtains So, 11 = —4(2n+1)e,x/(2n —1)
for integer n.

Note that Sz(z) o |z| corresponds to E(k) oc k=2, since every shock
gives ux x 1/k at k < v/v, such that the energy spectrum is determined by



