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Preface

Low noise constructions receive increasing attention in highly industrialized coun-
tries. Consequently, control of noise emission challenges a growing community of
engineers. Classically, noise emission is controlled experimentally utilizing the trial
and error method and engineering experience. The development of numerical meth-
ods such as the finite element and the boundary element method for low frequency
acoustic problems and statistic methods for high frequency problems allows simula-
tion of radiation and scattering from arbitrary geometric objects.

For low and medium frequency problems, classical approaches for solution of
problems of acoustics favor analytical methods including Fourier series approaches.
These approaches are quite powerful and they are still developed further. In particu-
lar, if orthogonal eigenfunctions are used as the basis functions of the Fourier series,
they converge rapidly. However, if the geometry of the radiator or scatterer becomes
more complicated, Fourier series become impractical to use. In these cases, numer-
ical methods can be used more conveniently. The easiest and most straightforward
approach consists of the finite difference method. However, finite difference methods
suffer from a number of specific problems such as mesh restrictions and dispersion.
Alternatively, finite element and boundary element methods use a more complicate
mathematical formulation but can be applied in a very general way.

This book deals with finite element and boundary element methods for acous-
tic problems. Although, the title contains the restriction of the acoustics of fluids, a
number of chapters consider solid structures as well. The edition comprises 21 chap-
ters. The first one, i.e. Chapter 0, is a concept chapter. It starts with the derivation of
the harmonic wave equation from the fundamental relations of continuum mechan-
ics. It is followed by ten chapters on finite element methods and another ten chapters
on boundary element methods. The reader is referred to Chapter 0 and Section 0.6,
cf. pages 2022, to survey the remaining chapters and discuss them related to the
formulations which are given in Chapter 0.



VIII Preface

This is a book on numerical methods. In the first volume of his series The Hitch-
hiker’s Guide to the Gala)cy,2 Douglas Adams formulates “the ultimate answer to
life, the universe, and everything.” It is a numeric solution: 42, evaluated by the com-
puter Deep Thought. A CPU time of &~ 2.37 x 104 seconds (7.5 Million years) was
required to achieve this interesting result. This book on numerical methods contains
contributions written by 42 authors. The number of 42 might indicate that it covers
a wide range of topics of computational acoustics. However, the reader should not
expect the ultimate answer to the problems of computational acoustics in general. It
took the editors &~ 20 months (= 5.2 x 107 seconds) of manual work from the idea to
the final version of the book. There are many reasons why this book has been com-
pleted much faster than the evaluation of Deep Thought. Maybe this was achieved
because the overall content is less general than the ultimate answer to life, the uni-
verse, and everything. Probably, the major reason for the successful and efficient
completion consists in the willingly collaboration of all authors to supply the editors
with their contributions. The editors wish to acknowledge that it has been their great
pleasure to work together with all authors.

A number of other persons have been relevant for the successful completion
of this edition. First of all, we wish to mention Eva Hestermann—Beyerle of the
Springer—Verlag in Heidelberg. It is worth mentioning that she encouraged the edi-
tors to start with their editorial work. Moreover, Eva Hestermann—Beyerle has contin-
uously supervised the progress of the edition and provided the editors with numerous
valuable advice.

The editors wish to thank their close colleagues at the Institute of Solid Mechan-
ics at Technische Universitit Dresden and at the Federal Armed Forces Underwa-
ter Acoustics and Marine Geophysics Research Institute for their patience and their
support. There are many others who contributed to the successful completion of this
work. It seems to be impossible to mention all of them. However, the editors are very
thankful for every single assistance in during the preparation of this book.

Dresden and Kiel, Steffen Marburg
October 2007 Bodo Nolte

*Douglas Adams’ The Hitchhiker’s Guide to the Galaxy was originally published in 1979
by Pan Books Ltd., London.
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A Unified Approach to Finite and Boundary Element
Discretization in Linear Time—Harmonic Acoustics

Steffen Marburg® and Bodo Nolte?

! Institut fiir Festkorpermechanik, Technische Universitit, 01062 Dresden, Germany
marburg@ifkm.mw.tu-dresden.de

2 Forschungsanstalt fiir Wasserschall und Geophysik, 241438 Kiel, Germany
BodoNolte@BWB.ORG

Summary. This chapter introduces the reader too important physical and mathematical con-
cepts in acoustics. It presents an approach to finite and boundary element techniques for lin-
ear time—harmonic acoustics starting from the fundamental axioms of continuum mechanics.
Based on these axioms, the wave equation is derived. Using a time—harmonic approximation,
the boundary value problem of linear time—harmonic acoustics is formulated in the classic
and in the weak form. Subsequently, two types of the weak form are used as the basis for
discretization resulting in a Galerkin finite element formulation, in a collocation boundary
element formulation and in a Galerkin boundary element formulation. Then, different repre-
sentations of sources and incident wave—fields in finite and boundary element methods are
discussed. In the final part of this chapter, the authors categorize the subsequent twenty chap-
ters of this book. The chapter will be completed by an outlook and some open problems in the
development of finite and boundary element techniques from the authors’ points of view.

0.1 Introduction

It must be stated in the beginning that due to the wide use of numerical methods,
the range of papers about finite and boundary element methods in acoustics is quite
difficult to survey. The development of these methods started almost half a century
ago and there are a number of monographs and editions, but only a limited number
which are solely dedicated to computational acoustics in general and, in particular, to
FEM and BEM in acoustics. With respect to finite element methods in acoustics, the
authors are aware of the books by Givoli [36] (including a chapter on BEM too) and
by Ihlenburg [47]; with respect to boundary element methods, we can mention the
editions by Ciskowski and Brebbia [18], von Estorff [29], Wu [110] and the mono-
graph by Kirkup [55]. There are a couple of interesting review papers on FEM and
BEM., see for example Harari et al. [42], Harari [41] and Thompson [99], also the
cost comparison of traditional FEM and BEM by Harari and Hughes [43]. Often,
FEM and BEM for acoustics are discussed in other contexts such as computational
methods for unbounded domains, cf. Geers [33] and Givoli [38], together with struc-
tural and/or electromagnetic wave propagation [1,44,78] and structural-acoustic op-
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timization and noise control [56,57,76], see also the review paper by Marburg [63].
Numerical methods have been described and reviewed in books on acoustics such
as Crighton et al. [23] and Mechel [73]. Furthermore, there are a number of special
issues of journals on FEM and BEM (some of them primarily dedicated to treatment
of the exterior problem), e.g. [7,37,48,61,62,66,71,80-82,104] and conference pro-
ceedings which contain high quality papers of the field, among many others, see for
instance [101, 108]. Finally, books on fluid—structure interaction problems are often
closely related to numerical methods and present specific formulations in detail, see
for example [2,19,46,75, 83].

It is the purpose of this chapter to present basic formulations of linear time—
harmonic acoustics and, in this context, to categorize the remaining twenty chapters
of this book. We will start with a short derivation of the linear wave equation. This
will be followed by presenting the boundary value problem of time—harmonic acous-
tics with its partial differential equation (Helmholtz equation) and boundary condi-
tions on one hand, and, on the other hand, a weak form which is the basis for the
discretization process. Approximation and discretization will be discussed in Sec-
tion 0.4. In the following Section 0.5, we will discuss different representations of
sources and incident wave fields. In Section 0.6, we categorize the remaining chap-
ters of this book. The chapter will be completed by an outlook and identification of
areas for future work in the development of finite and boundary element techniques
from the authors’ points of view.

0.2 Approach to the Wave Equation

Fundamentals of linear acoustics are based on the basic equations of continuum me-
chanics. It is assumed that the dimensions of the problem are large with respect to the
nanoscale in which the number of molecules is countable. For derivation of the wave
equation, we will use the Eulerian representation and, thus, the Eulerian or spatial
coordinates.

We consider problems defined in a domain {2. The complement is denoted by
{2.. I' represents the closed boundary of §2 and (2. This configuration includes the
direction of the outward normal, pointing into the domain {2, as shown in Figure 0.1.

0.2.1 Fundamental Axioms of Continuum Mechanics

For derivation of the wave equation, two fundamental laws of the theory of contin-
uum mechanics are required. These are the principle of conservation of mass and the
principle of balance of momentum.

Conservation of Mass

The principle of conservation of mass means that the total mass M of the considered
domain {2
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12 — n iz

interior problem exterior problem

Fig. 0.1 Definition of regions {2 and §2., boundary I" and outward normal vector 7v.

M(t) = /Qg(a:,t)dﬂ 0.1)

remains constant during the motion, where x and ¢ denote position vector and time.
Often, these dependencies will not be shown in this section. The principle of conser-
vation of mass implies that the material derivative (or total time derivative) vanishes,

ie.
. dM 0o B
M——d?—/n<at+gV»v)d.Q—0. 0.2)

The material derivative introduces the flow velocity vector v which results from
Ox/0t. In addition to the global validity of the conservation of mass, we require that
it is also valid for an arbitrarily small neighborhood of each material point which
implies the local conservation of mass as

de

E—FQV"I}:O. 0.3)

Balance of Momentum

The principle of balance of momentum means that the time rate of change of momen-
tum is equal to the resultant force F'r acting on the body. With momentum vector
P, also known as the linear momentum vector, this is written as

dP
P = —"— = Fp. 0.4
7 R 0.4)

Herein, the momentum vector is given by

P = /gvd.Q (0.5)
193
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whereas the resultant force combines volume forces and external forces as
= / bodf2? — /pndF. 0.6)
7, r

In Equation (0.6), the first term on the right hand side is known as the resultant
external body force with the external body force b. Using this term, we may consider
gravity effects. In acoustics, this term is usually not relevant and, consequently, zero.
The second term represents the resultant contact force which can be transformed into
a domain integral by application of the Gauss’ theorem

/pndF = /Vpdh(?‘ 0.7)
i n

The material derivative of the momentum is given as
dpP d d(ov)
—_— = df2) = df? =
at ~ dt ( / e ) /Q dt

- / [gf'vww v>"+g%“"” i ]‘m' oy

I

The first two terms of the integrand vanish with respect to the conservation of mass
in Equation (0.2) and (0.3), respectively. This yields

dP v
- / [ a+Q(v-V)v] 0 . 0.9)

Summarizing these manipulations, we incorporate Equations (0.6), (0.7) and (0.9)
into Equation (0.4) to obtain the so—called Euler equation

/ [ i))t +o(v-V)v + Vp] df? = (0.10)
or, in local form, .
E—i—g(v'V)v—f—Vp:OA 0.11)

In continuum mechanics, Euler’s equations of motion comprise the balance of mo-
mentum and the balance of momentum of momentum, also known as the balance
of angular momentum. The latter axiom can be neglected since shear effects are not
considered herein. Euler’s equation (0.11) can be considered as a special local form
of Newton’s equation of motion F' p = d(mwv)/ot.

Linearization and Simplification

Commonly, problems of linear acoustics refer to small perturbations of ambient
quantities. These ambient quantities are referred to by using the subscript 0. The
small fluctuating parts of pressure, density and flow velocity vector are represented
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as p, ¢ and . With this notation, we can substitute for the quantities pressure, density
and flow velocity as

= po + P,
0 = g + 0, (0.12)
v = v+ 0.

For simplicity for the wave equation approach, we assume that there is no ambient
flow, i.e. v = 0.

Substituting for the major quantities in Equation (0.3) and considering only first
order terms, we write

90 y
— v = 0. 0.13
ot + 00V -0 0 (0.13)
Similarly, Euler’s equation (0.11) is linearized and simplified as
0v
- +Vp =0, 0.14
g + VD (0.14)

where it is assumed that gy and py are independent of time and spatial coordinates.

0.2.2 Constitutive Equation

In fluids, sound propagates through pressure waves only. The velocity of the sound
pressure wave — better known as the speed of sound — depends on the propagation
material. For wave propagation in linear fluid acoustics, the speed of sound is one of
two relevant material parameters. It can be understood as the result of mathematical
relations of other material parameters which are not solely relevant for our consider-
ations.

The constitutive relations are usually referred to as the equations of state. With
respect to thermodynamics, the pressure fluctuation and, thus, sound propagation
occurs with negligible heat flow because the changes of the state occur so rapidly
that there is no time for the temperature to equalize with the surrounding medium.
This is the property of an adiabatic process. If fluctuation amplitudes and frequency
remain small enough, the process can be considered as reversible and isentropic.

Derivation of the speed of sound is different for gases, liquids and solids. Since
we limit our considerations to fluids herein, we will only discuss derivation of the
speed of sound for gases and liquids in what follows.

The speed of sound ¢ may be introduced as a constant to relate the fluctuating
parts of pressure and density to each other as

p = 2p. (0.15)

_ [op
c= 3, (0.16)

For gases, we will present finding the relation (0.15) whereas for liquids, we will
derive the speed of sound based on Equation (0.16).

This is equivalent to



