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PREFACE (¥

\ ¥

In classical mathematics the problems of computa
central position in the application and the developmen erful new theories and
there can be no doubt that the importance of these twin themes will endure for the fore-
seeable future. Systems theory, depending as it does on a variety of mathematical disci-
plines for its basic tools, provides a natural source of interesting problems for those classi-
cal and modern applicatjons of mathematics.

In this volume, we present a collection of papers on both the discrete and the continuous
aspects of these themes, ranging from fundamental systems theoretic applications of inter-
polation theory, numerical linear algebra and computational complex analysis to the de-
velopment of programming languages and strategies for flexible manufacturing systems and
VLSI design. The papers of this volume, which attest to the vitality and importance of
this cross-fertilization between pure and applied, were selected from the invited and con-
tributed papers presented at the 7th International Symposium on the Mathematical
Theory of Networks and Systems held at the Royal Institute of Technology in Stockholm
on June 10-14, 1985.

We would like to take this opportunity to thank the following research agencies for
their generous support of MTNS-85: the National Swedish Board for Technical Develop-
ment (STU), the Office of Naval Research Branch Office, London (ONRL), the Research
Institute of National Defence (FOA), the Swedish Institute for Applied Mathematics (ITM),
the Swedish Natural Science Research Council (NFR) and the USAF European Office of
Aerospace Research and Development (EOARD).

Christopher I. Byrnes and Anders Lindquist
Stockholm, January 29, 1986.
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ALGEBRAIC PROBLEMS ARISING IN ROBUST STABILIZATION AND COMPENSATION*

S.P. Bhattacharyya and J.W. Howze

Department of Electrical Engineering
Texas A&M University
College Station, Texas 77843
U.S.A.

The problem of designing a low order robust stabilizing
compensator for a linear time invariant system is de-
scribed and formulated in algebraic terms as a static
output feedback stabilization problem. A numerical
approach to this problem based on a suitably formulated
optimization problem is presented. This is an exten-
sion of the recently introduced algorithm for pole
assignment via Sylvester's equation. Some examples are
given.

INTRODUCTION

The problem of feedback stabilization of a given system by a compensator is the
central problem of control theory and design and almost every major theoretical
tool developed in the control literature is directed towards this problem.

Among the main distinct approaches to this problem are the LQG theory, the
state feedback observer approach, and the Brasch-Pearson pole placement approach
which are now standard and may be found in textbooks such as [1].

From a practical point of view none of the above approaches are adequate or
even reasonably satisfactory. The reason for this is twofold:

1) the dynamic order of the controllers that result in any of the above methods
is very high, and

2) the controllers are not robust, i.e., do not provide protection against
plant parameter perturbations.

The problem of high order is serious because typically one is interested in low
order controllers that are capable of controlling high order plants rather than
vice versa. The control system designer who is handed a high order controller
as the solution to the stabilization problem faces a high dimensional para-
meter space in which he has to carry out adjustments to meet various conflicting
design specifications. This poses formidable conceptual and computational
problems which are best avoided if at all possible.

The problem of robustness is well known in the literature: the controller must
preserve stability of the closed loop system when the plant undergoes perturba-
tions from a specified class. However, despite the extensive literature on the
subject, the only result that gives a constructive synthesis procedure for
generating a robust controller is, to the best of our knowledge, the recent re-
sult of Kimura [2]. The result of [2] is restricted to single input single

*This research was supported by the National Science Foundation under Grant No.
ECS-8309792



4 S.P. Bhattacharyya and J.W. Howze

output plants, considers additive perturbations of the transfer function, and

in general will provide high order solutions. With regard to the LQG approach
it is now well known that the good stability margins provided by the LQ solu-

tions disappear when implemented via output feedback.

In the present paper we attempt to provide a reasonably realistic formulation
of the problem of designing a low order robust stabilizing compensator. This
algebraic formulation is motivated by the observation that every compensator
corresponds to a static output feedback controller for an augmented system de-
rived from the plant. Robust compensator design then corresponds to the design
of a robust static output feedback control law. It is proposed that analytical
approaches be developed by researchers for the resolution of this unsolved
problem. A numerical approach for solution of this problem will be described
along with examples.

PROBLEM FORMULATION

Let

S : X = Ax + Bu, X€ R"
P y = Cx

denote the plant and

S :2=Az+Bu, ze R
P c cec
y=Cz+Du
c ¢ cc

the controller with the feedback connection

u =y
Vg T B

so that the closed loop system equations are:

(R )6

Acz

The problem of feedback stabilization is:

Given the plant (A, B, C) find a controller (A », D ) so that the _
eigenvalues of A ¢ 11e in the left half of the" com lexcplane, i.e.; O(Acf?‘: C .
2 2&e B o

The necessary and sufficient conditions for the existence of some controller is
given by stabilizability and detectability of (A,B,C) and under this assumption
the problem can be reformulated by considering (A,B,C) to be controllable and
observable, without loss of generality [1]. When the order q of the controller
is fixed, however, no necessary and sufficient conditions for the existence of
(Ac’ Bc’ Cc’ Dc) are known.



Algebraic Problems

Now since

A = A (o] B (o] D C C 0
cl + c c
0o 0 (0] I B A 0 I
q e c q
—_—_— ————
A B K C
q q q q

= A +B K C
q 9 9 9q

it is clear that the problem of feedback stabilization by a fixed order
controller is equivalent to stabilizing A + B K C by choice of K . The minimal
order of a stabilizing controller is the smallest integer q* such that there

exists Kq* for which Aq* # Bq*Kq*Cq* is stable.
The problem of finding q* is one of the outstanding unsolved problems of control
theory. The available bounds on q* are

1) the pole-placement result of Brasch-Pearson [3] which states that

q* < Min Pa B
where P, is the controllability index of (A,B) and Py is the observability index
of (C,A), and
2) the stabilization result of Kimura [4] according to which

¢*<n+1l-r-mn
where r and m are the number of inputs and outputs respectively.

In the following section we present a numerical approach to the output feedback
stabilization problem. This algorithm can be applied to the problem of finding
a low order stabilizing compensator by sequentially applying it to (Ai’ Bi’ Ci)
for i = 0,1,2 ... until a q is found such that A + B K C_ is stable for some

K . The algorithm also provides for some robustness in the sense that a K is
found that attempts to orthogonalize the eigenvector set of A + BKC. It is well
known [5] and [6] that such a choice of K causes the eigenvalues of A + BKC to
be relatively insensitive to first order perturbations in the entries of the
matrix.

NUMERICAL ALGORITHM

In this section we display an algorithm for finding K, if it exists, so that

A + BKC is stable. We shall extend the state feedback pole assignment algorithm
via Sylvester's equation, developed in {7], to handle this problem. The advan-
tage of this algorithm is that it parametrizes the entire family of solutions
to the state feedback problem so that an efficient approximation to the output
feedback problem may be obtained.

The state feedback pole assignment algorithm of [7] is:
1) Solve for X in

AX - XA = -BG

for some X with o(A) = A and for any G so that (G,A) is observable. Then by
the result of [8] X will almost always be nonsingular.
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2) Solve for F in
FX = G
Then o(A + BF) = A

To adapt this to the output feedback case we also want that F be approximated

by KC, i.e., WF-KC || be small. Moreover since the closed loop eigenvalues

are those of A + BKC it is important to ensure that o(A + BKC) and g(A + BF)

be "close" if F and KC are "close." This can be taken into consideration by
attempting to orthonormalize the eigenvector set of A + BF. Finally the
assigned eigenvalues are required to lie in a region QCC~ which is appropriately
chosen. Based on these consideration we formulate the optimization problem:

Find F and K so that

J = ajtrace [I—XXT]2 + oagfrace (F—Kij(F—KC) is minimized where G(A+BF)

€ Q and X is the eigenvector matrix of A + BF.

As mentioned before we may take 0(A)C$ with A diagonal so that in

AX - XX = -BG
FX = G

X becomes the eigenvector matrix of A + BF. The gradient of J with respect to
G may be calculated. The details of this calculation are omitted and may be
found in [9]. The result derived in [9] is that

B -2 foF(1- 2+ ®efRaI) T - FuT)
AG
where U satisfies
KU - UA=a X1+ 2 @Y+ (RO ®ROY IETF
+2 o, [1% x]x"
and R = ¢T (ccBH7L.
Based on this we may formulate the gradient based algorithm:
Step O: Pick O(KOX:Q and Go
Step 1: Find F and K that minimizes

J = ulTrace{I - xxT}2 + uzTrace{(F - Kc)T (F - KC)}

with respect to G.

Step 2: IF o(A + BKC)C Q
THEN stop (controller found)
ELSE continue to Step 3.

Step 3: Compute 3J by numerical procedures
JA

o B
all €

THEN continue to Step 4.

ELSE stop
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Step 4: Obtain a new Ki ' 1

Set i = i + 1 and continue to Step 1.

using a gradient based method.

EXAMPLES

All examples shown here indicate that lower order output feedbacks were achieved
and the region  was defined as the whole left half complex plane to achieve a
stabilizing controller.

Example 1

1 2 3

A= 4 5 6
7 8 9

B = 1 o
0 1
11
-

Cc = (1 0.5 1.5)

1 0.5 1.5
Initial guess of G = |-0.5 ~1 1

Eigenvalues of A = (16.1168, -1.1168, 0).
Initial eigenvalues of K = (-1,-2,-3).
Initial cost I, = 659.42478159.

6.3778387856.

Final cost J
opt

Obtained K = (-0.7538303194 =-9.560368516)

Eigenvalues of A + BKC = -2.402794+ j4.94279, -1.19972433.

Example 2

M 0 0 o

~ 00 1 0

a, ™ 000 0
1 0 00
1 o

_ 1 0

E = 01
10 0

~ 110 1

i [—1 10.50]

Initial guess of G = [

— U

2 2 1
-1 2 1
Eigenvalues of A = (1,0,0,0).

Initial eigenvalues of X = (-1 + j2, -2 + jl).



8 S.P. Bhattacharyya and J. W. Howze

Initial cost of JO = 159.758483.

Final cost J = 3.492771.
opt

1.559706 -1.225891
2.355928 -10.53672

Obtained K = [_

Eigenvalues of A + BKC = (—1.1835423fj1.392888, -3.230272, -1.790421).

Example 3

orror focoor~1

- 1 05 -1 0 1
-1 0 -0.51.50

A _]/01 -1 0 1
Initial guess of G = [1 1 -1 0 1}

Eigenvalues of A = (-1.22474, 1.22474, -1.8336, 1.66682+ 71.52788).
Initial eigenvalues of A = (—2.5t‘j2.5, -3+33, -3.5).

440.983766.

Initial cost Jo

Final cost J0 6.650208.

pt

253.10249  -50.30768&
25.604106 -16.62546

Obtained K = [

Eigenvalues of A + BKC = (—1.7441f j9.2792, -5.5774+ §2.3377, -0.4822).
CONCLUDING REMARKS

The problem of finding a low order if not the smallest order controller that
stabilizes a system has been shown to be equivalent to finding the smallest q
such that A + B K C is stable for some K . This is an unsolved problem and
deserves to%be s819ed in an efficient manndr. The determination of K so that
A + B K C remains stable for a class of perturbations in (A,B,C) is‘ithe
p%obleﬁ gfqrobust stabilization and deserves the attention of researchers, This
paper has indicated a numerical approach to address some of these problems but
obviously the whole problem is open for solution.



[1]

[2]

[3]

[41]

[51

[6]

[7]

[8]

[9]

Algebraic Problems

W.M. Wonham, "Linear Multivariable Control: A Geometric Approach."
Springer Verlag, 1984.

H. Kimura, "Pole assignment by gain output feedback." IEEE T-AC, Vol.
AC-20, No. 4, pp. 509-516, August 1975.

F.M. Brasch and J.B. Pearson, "Pole placement using dynamic compensators."
IEEE T-AC, Vol. AC-15 (1), pp. 34-43, February 1970.

H. Kimura, "Robust Stabilizability of a class of transfer functions."
IEEE T-AC, Vol. AC-29, No. 9, pp. 788-793, September 1984.

J.H. Wilkinson, "The Algebraic Eigenvalue Problem." Clarendon Press, 1964.
R.K. Cavin III and S.P. Bhattacharyya, "Robust and well conditioned

eigenstructure assignment via Sylvester's equation,'" Optimal Control
Applications and Methods, Vol. 4, pp. 205-212, 1983.

S.P. Bhattacharyya and E. de Sonza, "Pole assignment via Sylvester's
Equation," System and Control Letters, Vol. 1, No. 4, pp. 261-163,
January 1982.

E. de Sonza and S.P. Bhattacharyya, "Controllability, Observability and
the Solution of AX - XB = C," Lin. Alg. and its Applic., Vol. 39, pp.
167-188, 1981.

L.H. Keel and S.P. Bhattacharyya, '"Compensator Design for Robust Eigen-
struct Assignment via Sylvester's Equation," Proc. of the 1985 American
Control Conference, June 1985, Boston.

Acknowledgement: The authors are grateful to L.H. Keel for generating the
numerical examples.



