

l l
l

Numerical

~ John Wiley & Sons, Inc., New York - London

Zal
B9 3 23173

Analysis

NATHANIEL MACON

Professor of Mathematics and Director of Computer Laboratory
Department of Mathematics, Aubussdniversity

g

3 . ; ,,,.- %
A - i‘J:‘l i g ;
1 AT G -G N S
' roaad S e N
Y '-,'j_‘ T

Numerical Analysis

To Alfred T. Brauer

Preface

Numerical analysis, by general definition, is the branch of mathematics
concerned with developing and evaluating techniques of employing
computers to solve problems. Much day-to-day computing is done by
intuition and trial and error. Numerical analysis is concerned with
narrowing the gap between science and artistry in computing, although
that gap will never be completely closed. We seek to establish methods
for obtaining answers and ascertaining their accuracy. When the numerical
analyst uses his science, he can rely on the accuracy of his computations
and determine whether his results are meaningful.

This book is designed as a textbook for a one-semester first course in
numerical analysis or as a volume for independent study by one who
wishes to grasp the rudiments of the subject. It can readily be incorporated
into a course on the philosophy and techniques of computing that includes
numerical analysis. Although the book was written with high-speed
computation in mind, it is a mathematical textbook and not a collection
of algorithms.

An introductory chapter on computers is followed by chapters on
approximation by Taylor’s series, iterative methods of solving equations,
numerical methods of linear algebra, interpolation with polynomials,
numerical differentiation and integration, and numerical solution of
ordinary differential equations. Other topics, such as the uses of orthog-
onal functions and the numerical solution of partial differential equations,
are omitted in the interest of brevity. Certain important methods are
omitted because accurate and honest descriptions which can be readily
presented to students with limited backgrounds in algebra and advanced
calculus are difficult to formulate. The most regrettable such omission
is a discussion of the Runge-Kutta methods.

The book requires only a knowledge of freshman mathematics and
calculus as exemplified by the textbooks of Allendoerfer and Oakley
and of Johnson and Kiokmeister, respectively. Students having some

vii

viii PREFACE

acquaintance with elementary matrix theory, differential equations, and
advanced calculus can expect to master the material in the later chapters
more rapidly than those with only a minimum background. It is hoped
that every reader will learn to code an automatic digital computer if he
has not already done so. Coding in an algebraic language, such as FOR-
TRAN or ALGOL, is to be preferred, since there is no need for the
reader to concern himself with the difficulties or peculiarities of a specific
machine.

The book provides more detailed and accurate discussions of methods
than is customary in elementary textbooks on numerical methods. Labori-
ous numerical examples are conspicuous by their absence; the student is
encouraged to study a few typical algorithms critically, produce flow
charts for them, code them in some algebraic language, and—if at all
possible—run them on a computer.

I believe that one of the most useful skills any student of mathematics
can acquire is that of constructing simple, meaningful numerical examples.
Both the theoretician and the problem solver will find no easier or quicker
way to gain insight into a mathematical structure, discover the cause of an
unexpected phenomenon, or isolate a blunder in a code than by con-
structing an appropriate example. Several such examples are given early
in the text, but the reader will find it increasingly necessary to supply his
own as his study progresses.

Students should recogfiize that the mathematical literature, though
necessarily concise and occasionally inscrutable, is one of the principal
tools of the mathematical profession. This book is written in such a way
that the reader must provide a great deal of the exposition himself, much
as he would when reading a mathematical journal or treatise. Considerable
care has been taken to assure that the gaps are not too great and that the
material is within the grasp of anyone with a reasonable knowledge of
first-year calculus. Thus it has been necessary from time to time to include
material of an auxiliary character, especially in connection with the
treatment of linear algebra. Because of limitations of space I have occa-
sionally referred the reader to standard textbooks for proofs of theorems
on such matters as the expansion of a determinant by cofactors and the
location of the zeros of the Legendre polynomials. Suggested sources of
material for further study appear frequently, since a book of this nature
is necessarily limited in scope.

The overwhelming majority of numerical problems confronted in
science and engineering fall into two classes. First are those which can be
disposed of in a few minutes on a half dozen or so sheets of paper. The
others are of sufficient complexity or length to require a high-speed
computer. The greatest use of desk calculators today is probably in

PREFACE ix

facilitating the “debugging” of codes prepared for electronic computers.
Although the desk calculator does not play quite the same role in modern
numerical analysis as does the slide rule in a course in analytic trigonom-
etry, it is better pedagogical strategy to ignore it completely than to risk
overemphasis at the expense of the development of analytical skills and
feeling for what automatic computers can and cannot do.

Perhaps unfortunately, there is very little emphasis in this book on
physical motivation and on interpretation of results in terms of scientific
problems. In most cases the instructor will find it a simple matter to
provide a heuristic discussion in the course of his classroom lectures.

NATHANIEL MACON
The Hague, Netherlands

January, 1963

1

Basic Concepts

It is our purpose in this chapter to review briefly the working of
high-speed electronic computers. The subject is too complicated to allow
- a complete or rigorous discussion in a short space. We hope only to
present a few fundamentals that affect the character of the problems and
methods we are to study.

We hope that the reader will learn to code at least one automatic digital
computing machine. We can learn to code any machine without actually
seeing it; in fact, programmers usually begin coding a new machine as
soon as the designers have decided on a machine language, so that a number
of programs will be completed by the time the first machine is built and
ready foruse. Learning to code will help us to understand what computers
can and cannot do and to realize that the use of a computer requires precise
formulation of the problem and complete accuracy in the formulation of
the code.

There are two major classes of electronic computers, analog computers
and digital computers. Our interest is directed almost entirely toward
digital computers. The analog computer, simpler in concept, is dealt with
briefly in the next section.

ELECTRONIC ANALOG COMPUTERS

Analog computers do not work with numbers themselves; numbers are
represented in them as measurements of continuous physical variables such
as voltages across terminals or lengths of rods. It is often possible, by
using physical laws, to represent a complicated mathematical relation in a
relatively simple mechanism. Such a mechanism is called an analog
computer.

As an example we consider a crude device for solving equations of the

form Bt — =0
1

2 NUMERICAL ANALYSIS

where k is a given constant. The device is not electronic, since, having been
developed in 1898, it predates electronics as we know it today. The inven-
tor, A. Demanet, made use of the fact that the volume of a cone of proper
taper is equal to 23 cubic centimeters, where 2 is the altitude of the cone in
centimeters, and that the volume of a cylinder of unit cross-sectional area
is equal to = cubic centimeters, where is again the altitude in centiméters.

Demanet’s computer consists of a cone having its radius and altitude in
the ratio V/3/ and a cylinder of radius 1/V/7 centimeters connected by a
tube as in the accompanying figure. When k cubic centimeters of liquid
are poured into one of the vessels, the equation for the total volume of
liquid in both vessels is

B+r=%k

and the common depth z to which the liquid settles is a root of the equation

B+arx—k=0

Cylinder

Tube

This rudimentary computer illustrates some important characteristics of -
analog computers. It is quite simple and can be inexpensively constructed ;
on the other hand, it has a rather limited range of application and is of
little use in solving other problems. Finally, it has an inherent limitation:
Processes of measurement introduce errors into the computation. Even if
the cone and cylinder were perfectly constructed, inaccuracies in the
measurement of the input variable (the volume of liquid) and the output
variable (the depth of liquid in the containers) would remain.

In an electronic analog computer various physical or numerical quantities
are usually represented by voltages. These voltages are operated upon by
computing circuits within the machine. Circuits are available that will
multiply a voltage by a positive constant, invert the sign of a voltage, gen-
erate a voltage proportional to the sum of two or more voltages, generate
a voltage proportional to the product of two input voltages, and generate
a voltage proportional to the integral of an input voltage with respect to

BASIC CONCEPTS 3

time. It is up to the operator of the computer to see that these circuits are
connected in such a way that they represent the problem he wishes to have
solved.

In summary, an analog computer is a machine that represents numbers
by continuously varying physical magnitudes, such as voltages or depths of
liquid in containers. Each step or operation is performed by a separate
unit, all units operating simultaneously. Many analog computers are
characterized by simplicity and comparatively low cost. Versatility and
high precision are often lacking. Within the limitations ofa given computer,
however, it is possible for the operator to set up complex problems rather
quickly and vary the input conditions at will.

ELECTRONIC DIGITAL COMPUTERS

We now leave analog computers and turn to a discussion of digital com-
puters, which contrast greatly with analog computers. Digital computers
are more complicated but more versatile; their applications range from
the simplest clerical operations to the most difficult scientific calculations.
Computers range in size from portable, battery-operated machines to giant
systems weighing many tons. They range in cost from a few thousand to
several million dollars. (In some circles the “megabuck” is taken to be the
unit of cost.) Despite these enormous variations, digital computers tend
to differ from each other in degree rather than fundamentals and for the
most part our discussion is applicable to all sizes and types.

Digital computers are so named because they deal with symbols (or
digits) rather than with continuously varying voltages or other quantities.
The symbols differ from those people ordinarily use because information
must be represented in a form that is legible to the computer mechanism.
The choice of symbols and their meaning is made by the designers of a
computer. The important thing is that information relayed to a machine
be represented by symbols which form a language of communication
between people and machines.

A digital computing system consists of three types of functional unit:
Input-output devices, storage devices, and central processing units.

The input-output devices serve as a channel of communication between the
computer and the outside world, which may consist of people or, in the case
of a control operation, other machines of various kinds. The input-output
system may be thought of as a translator which speaks both the language
of the digital computer and the language of the outside world.

The storage devices constitute a sort of electronic filing system. Symbols
are read into storage by input units and are then available for processing.
Each location, position, or section of storage is numbered so that stored

4 NUMERICAL ANALYSIS

symbols can be located by the computer as needed. The computer may
rearrange the symbols stored in it, and it may also take the original symbols
from storage, calculate new ones, and place the results back in storage.
Symbols can be transferred from storage to an output unit for printing or
other display. The capacity or size of the storage is an important factor in
determining the size and cost of a digital computing system. In some com-
puters millions of symbols may be stored simultaneously; in others,
storage of only a thousand or so is possible. Access time, or the average
time required for a unit of information to be transferred from storage to
the central processing unit, also varies widely. In older machines particu-
larly access time is rather long and is the principal factor limiting the speed
of the machine.

Central processing units are mechanisms that carry out the manipulation
of symbols once they are read into storage. A typical unit consists of two

parts: : . S
1. An arithmetic and logic unit

2. A control unit

An arithmetic unit is capable of performing the ordinary operations of
arithmetic when it receives an instruction to do so from a control unit. It
also has a degree of logical ability—the ability to test various conditions,
such as the relative size of two numbers in storage, and to take action
called for by the outcome of the test. Control units are responsible for the
initiation and monitoring of the operation of the computer. Their function
is to cause the machine to perform specified operations on specified groups
of symbols in a specified sequence. In the process, control units maintain
a constant flow of symbols between the storage and the arithmetic units,
activate circuits in the arithmetic units, and start or stop the action of input
and output devices, all according to a procedure originated by the human
operators of the computer. Such a procedure is called a program.

STORED PROGRAMS

We have seen that the operation of a digital computing system involves
a number of planned steps spelled out by the human operators of the
machine. Each step must be written out in terms of operations that the
computer can perform. Each operation is coded as an instruction in a
form that can be interpreted by the computer and is placed in the storage
unit as a part of a stored program.

The necessity of storing programs is almost obvious. The basic unit of
time in most modern computers is the microsecond—one millionth part of
a second. Operations take place at a rate of perhaps several hundred
thousand each second. It is essential that instructions be available to the

BASIC CONCEPTS S

central processing unit at comparable speeds, and this is possible only when
fully automatic control is provided, the program is stored internally, and
the computer has access to instructions at electronic speeds.

The symbols stored in a computer are partitioned into definite groups or
entities called words. Associated with each word is its location in storage,
or its address. The addresses of the words are analogous to the page num-
bers in this book—they specify the place in which certain information is to
be found but are not normally a part of the information itself. Thus a
word consists of a group of symbols located in storage that are comprehen-
sible to the central processing unit. '

These words are subject to one of two interpretations by the central
processing unit; a numerical interpretation or an operational interpre-
tation. When a word is subject to a numerical interpretation, the group of
symbols constituting the word is decoded in some fashion specified by the
designers of the computer. The method used to symbolize data is known
" as a code. This code symbolizes a set of digits, an algebraic sign (plus or
minus), and the location of a decimal point. Two forms of numerical
indication are common. In one a sequence of significant digits, or mantissa,
an algebraic sign, and an exponent are encoded. For example, a configur-
ation like —314159(1) might stand for —0.314159 x 10! or —3.14159.
Using this scheme the number 50310.2 or 0.503102 X 10° would be written
+503102(5). Since the location of the decimal point is freely variable, the
scheme is said to use a floating point. If on the other hand the location of
the decimal point is assumed to be the same for all numerical words, the
scheme is said to use a fixed point. The bother of keeping track of the loca-
tion of the decimal point isleft to the program, and thus to the programmer.

When words are transferred from storage to the control section of a
central processing unit the symbols are interpreted as instructions. These
instructions are used by the control section to determine the interplay
among storage units, arithmetic and logic units, and input-output devices.
Each instruction consists of two or more parts:

1. An operation part that designates read, write, add, multiply, subtract,
test sign, move data, and so on.

2. An address part that designates the address of the information or
device needed for the specified operation.

Every operation the computer can perform has a unique code symbol
which is to be found in the operation part of an instruction, where it can
be interpreted by a control unit. Each word in storage has an address
associated with it which specifies its location in a storage unit. The address
part of an instruction does not contain the information proper, only the
address where it is to be found.

6 NUMERICAL ANALYSIS

The normal sequence of operation of a computer is as follows. All
words to be required during a computation, data and instructions, are read
into storage by an input unit. The computer locates the first instruction it
is to perform either on command from a console or by looking in a pre-
determined location in storage assigned for this purpose. This first instruc-
tionisexecuted. The computer then locates the next instruction and executes
it.! This process continues automatically until the computer encounters
an instruction telling it to stop.

The distinction between instructions and data in storage is made only
by whether a word is brought into an arithmetic and logic section of the
central processing unit or into a control section. Consequently the com-
puter can operate on its own instructions if they are brought into the
arithmetic and logic unit as data, and it can be programmed to alter its own
instructions according to conditions encountered during the course of com-
putation. It is this ability to process instructions that provides the remark-
able flexibility and “logical ability” of stored-program computers.

This ability means that a single set of instructions can be used to operate
on multiple sets of data stored in different locations. As each group of
data is processed, the program is modified so that it subsequently refers to
the next group. Italso allows for the selection of alternatives in the program
on the basis of conditions arising during processing. To illustrate, suppose
that a calculation involves the evaluation of the function

y=z for z<1
y=—=2x+32 for z>1

This can be done by instructing the machine to select one of two sequences
of instructions according as x is less than or not less than 1.

DEVELOPING A PROGRAM

Despite the diversity of the problems some form of digital computation
can attack, the course of preparing a problem for computation tends to
vary rather little from problem to problem. There is of course great vari-
ation among problems in difficulty and sophistication, and there is a great

! Location of the next instruction may be done in a variety of ways. In some machines
instructions contain an “‘instruction address” giving the location of the next instruction
in the sequence. In others, instructions are stored sequentially so that each instruction
has an address one unit higher than the preceding. The pattern of sequential selection
of instructions may be altered at any point by means of a “branch” instruction analogous
to the ‘““continued on page thus and so” instruction given to magazine readers when
the sequence of pagination is broken.

BASIC CONCEPTS 7

deal of overlap and interplay among the various stages of solution, which
we outline next.

The first and often the most difficult stage in preparing a program is the
formulation of the problem. What are the objectives of the program? Is
there any reason to suppose that these objectives can be reached with the
means we have at hand? How can the language of the problem be trans-
lated into mathematical terms? _

Numerical analysis begins after the problem has been formulated and
perhaps after we have decided whether or not the problem has a solution
and whether or not it may have more than one. We are then faced with
the reduction of the mathematical problem to a numerical procedure—with
numerical analysis. Here we may find relevant mathematical theorems
with proofs or references to proofs, an error analysis, a discussion of the
circumstances under which the procedure may be expected to perform well
or poorly, comparisons with other techniques, and references to relevant
literature.

Although the subsequent steps in preparing a problem for a computer
are not an essential part of numerical analysis it is important to understand
them. Numerica! analysis, like all mathematics, is influenced to an extent
by its applications, one which is computing.

The numerical analyst investigates a numerical method; the programmer
describes it; the computer executes it. Programming is translating a
numerical procedure, clearly and unambiguously, into a sequence of com-
mands that can be read and executed by a digital computer. In most situ-
ations the programmer has a choice of languages in which to write his
description. Specifically, the natural language of the machine is always
available. In addition there are a number of artificial languages, such as
FORTRAN? and ALGOL.?

A machine language statement normally appears in a numeric form, such
as

21 07000 09800

The first two digits, 21, may be interpreted as an operation code and the
remaining as two addresses, 07000 and 09800. The machine might interpret
the command as “add the number stored in the location whose address is
07000 to the number stored in the location whose address is 09800.” Pre-
sumably the result would then be available in some definite place in an
arithmetic unit. Itis not uncommon to find that operation codes have been

? D. D. McCracken, A Guide to FORTRAN Programming, John Wiley, New York,
1961.

3 H. Bottenbruch, “Structure and Use of ALGOL 60,” Jour. A.C.M., vol. 9 (1962),
161-221.

8 NUMERICAL ANALYSIS

assigned mnemonic equivalents, such as ADD for 21. The machine, on
receiving a command in its mnemonic form, can be instructed to consult a
table and assign the corresponding numeric code.

It is evident that conversion of a mathematical discussion complete with
derivations and proofs into a sequence of machine language commands
can be a prodigious undertaking. The artificial languages are a product of
our efforts to utilize the speed and logical ability of a computer to reduce
the task.

The ability of a computing machine to manipulate symbols is brought
into play by means of a compiler. A compiler is a sequence of machine
language instructions which, when executed, will translate a procedure
written in a given artificial language, the source program, into an equivalent
procedure written in machine language, the object program. The object
program may be executed to produce “answers.”

A program written in an artificial language consists of a sequence of
statements. Although two types of statements appear in such a language,
we are concerned with only one of them, executable statements. They
describe the procedure. The other type of statement is used in relating facts
about the source program. For example, the END statement, which is last
statement in any FORTRAN program, indicates that the end of the source
program has been reached. By contrast, a STOP statement is executable
and is eventually translated into an equivalent machine language command.

The executable statements in the FORTRAN language are arithmetic
statements, input-output statements, and control statements. A typical
arithmetic statement is

X=(A+4+B)/(C=*B)—4.1*Ax*xC 6))

In algebraic language this statement is equivalent to X = ((A + B)/CB) —
4.1A°, where A, B, and C are the names of constants stored in a computer.
The statement should properly be called a substitution statement; the
FORTRAN compiler will generate from it a sequence of machine language
commands which, if executed, will result in replacement of the current
value of X by the value of the expression to the right of the equals sign. In
addition to the substitution symbol (the equals sign), we have the symbols
for the basic arithmetic operations indicated by 4, —, *, and /, and expon-
entiation indicated by *+. The compiler also provides for the use of certain
common mathematical functions, provided their preassigned names are
used. For example, the statement X = SQRTF(Y) will cause the compiler
to generate instructions which on execution will replace the current value
of X by the positive square root of the current value of the variable Y as
calculated by a square-root program which has already been written and

BASIC CONCEPTS 9

incorporated in the compiler. A typical list of such functions, along with
their names, might include:

Function Name (FORTRAN)

Square root of » SQRTF(X)
Exponential e® EXPF(X)
Natural logarithm log = LOGF(X)

Sine function (= in radian measure) SINF(X)

Cosine function COSF(X)
Arctangent (result in radian measure) ATANF(X)
Absolute value |z| ABSF(X)

Control statements are the logic statements in the FORTRAN language.
Their primary use is in controlling the sequence in which commands are
executed. For this purpose statement numbers are introduced to those
statements that may be referenced by control statements. The numbers
are positive integers, not necessarily consecutive, written at the left of the
FORTRAN statements. As an example of a control statement, the com-
mand GO TO 23 will result in generation of a machine language branch
instruction transferring control to the first of the sequence of machine
language commands corresponding to statement number 23. The state-
ment IF(ATANF(X) — B *x X) 5, 10, 15 will be interpreted as ““if arctan
X — B* <0, go to statement 5; if it equals zero, go to statement 10; if
arctan X — BX > 0, go to statement 15.” To a great degree the usefulness
of an artificial language depends on the flexibility and variety of the control
statements available.

The input-output statements of a language are used to assign names to
variables to be read or written, their formats on cards or tape, and to
specify the input-output devices to be used. Forinstance, READ 1A, B, C
might mean “read three numbers from a card according to the formats
specified in statement 1. The locations in which they are stored are assigned
the names A, B, and C, respectively.” Other such instructions are WRITE,
PRINT, READ INPUT TAPE, and WRITE TAPE. A programming
manual should be consulted for details.

In summary, the sequence of events that takes place in using an artificial
language is as follows. The procedure is described in the artificial language,
and the description is read into a computer and translated, by means of a
compiler program, into an object program. This machine language pro-
gram may then be executed to effect the procedure.

FLOW CHARTS

The transition from numerical analysis to programming can generally
be facilitated by a flow chart. Not only do detailed lists of mathematical

