


8363857

POR ﬂ

BND (N IODE
SHAPE

Robert D Bleuins PhD

T

88888888

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
,,,,,,



Van Nostrand Reinhold Company Regional Offices:
New York Cincinnati Atlanta Dallas San Francisco

Van Nostrand Reinhold Company International Offices:
London Toronto Melbourne

Copyright © 1979 by Litton Educational Publishing, Inc.

Library of Congress Catalog Card Number: 79-556
ISBN: 0-442-20710-7

All rights reserved. No part of this work covered by the copyright hereon may
be reproduced or used in any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company
135 West 50th Street, New York, NY 10020

Published simultaneously in Canada by Van Nostrand Reinhold Ltd.

1514 13121110987 654321

Library of Congress Cataloging in Publication Data

Blevins, Robert D
Formulas for natural frequency and mode shape.

Includes bibliographical references and index.

1. Structural dynamics—Handbooks, manuals, etc.
2. Vibration—Handbooks, manuals, etc.
3. Hydraulics—Handbooks, manuals, etc. 1. Title.
TA654.B54 620.3 79-556
ISBN 0-442-20710-7



8363857

CORMLLES
R NATURAL
Al zhes

BND MODE
SHAPE



PREFACE

The purpose of this book is to provide a summary of formulas and principles on the
vibration of structural and fluid systems. It is intended to be a reference book for
engineers, designers, and students who have had some introduction to the theory of
vibrations. However, anyone with a grasp of basic physics and an electronic calculator
should have little difficulty in applying the formulas presented here.

Vibrations of structures have been known since man first heard wind ruffle the
leaves of trees. Quantitative knowledge of vibrations was mostly limited to empirical
descriptions of pendulums and stringed instruments until the development of calculus
by Sir Isaac Newton and Gottfried Wilhelm Leibnitz in the late 1600%. The first in-
stance in which the normal modes of continuous systems were determined involved
the modes of a hanging chain, which were described in terms of Bessel functions by
Daniel Bernoulli in 1732. The beauty and intricacy of modal patterns were actually
visualized in 1787 when Ernst Chladni developed the method of placing sand on a
vibrating plate. Mathematical description of vibrating plates proved more elusive. In
1809 Napoleon Bonaparte presented the Paris Institute of Science with the sum of
3000 francs to be given as a prize for a satisfactory mathematical theory of the vibra-
tion of plates. This prize was finally awarded in 1816 to Mademoiselle Sophie
Germain, who first derived the correct differential equation but obtained erroneous
boundary conditions. The theory of plate vibration was completed in 1850 by Gustav
Kirchhoff. During the 1850’s, calculus was applied to the vibration analysis of a
number of practically important structural systems. This led to Lord Rayleigh’s
publication of The Theory of Sound (1st ed., 1877), which remains in print today.
Lord Rayleigh, born John William Strutt, independently developed his own laboratory
and devoted himself to science. His fellow countrymen must have thought him a bit
odd as he investigated the vibration modes of their church bells.

A. E. H. Love’s A Treatise on the Mathematical Theory of Elasticity (4th ed.,
1926) and Horace Lamb’s The Dynamical Theory of Sound (2nd ed., 1925) together
with Rayleigh’s The Theory of Sound form the basis of modern vibration analysis.
Solutions developed in each of these books are presented here. During the early and
middle 1900’s, the techniques presented in these books were applied to increasingly
complex systems. Sophisticated approximate techniques such as those employed by
Stephen P. Timoshenko in Vibration Problems in Engineering (1st ed., 1928) also
appeared during that period.

The advent of reliable electronic computers in the 1950’s and the widespread in-
stallation of these computers in the early 1960’s led to two new parallel paths for
analyzing complex systems. First, the computer made it possible to generate ap-
proximate semi-closed form solutions which rely on classical solution techniques but
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with numerical evaluation of certain terms which cannot be expressed in closed form.
Second, the development of large digital computers has made it feasible to simulate
systems directly using finite element models. Today it is possible to simulate virtually
any well-defined linear system on a large general purpose digital computer and
obtain its natural frequencies, mode shapes, and response without resort to a
theoretical treatment. Of course, the result is purely numerical, and physical insight
into the nature of the solution must still be obtained through classical reasoning.

A vibration analysis generally follows four steps. First, the structure or system of
interest is identified, its boundary conditions are estimated, and its interfaces with
other systems are plotted. Second, the natural frequencies and mode shapes of the
structure are determined by analysis or direct experimental measurement. Third,
the time dependent loads on the structure are estimated. Fourth, these loads are
applied to an analytical model of the structure to determine its response. The cru-
cial steps in the vibration analysis are the identification of the structure and the
determination of its natural frequencies and mode shapes.

The aim of this book is to provide formulas for the natural frequencies and mode
shapes of a wide range of structures in easily used form so that the analyst can
rapidly obtain his result without either searching the literature or spending the hours
ordinarily required to successfully complete a finite element numerical simulation.

This book was written by searching through the cornucopia of solutions available
in the literature for those solutions whose practicality and generality make them
useful tools for the engineer or designer. In order to yield a compact volume, only
those solutions which could be adequately presented in a relatively small space have
been included. Chapters 1 through 5 present definitions, symbols, instruction in
units, basic principles, and geometric properties of rigid structures. Chapter 6 is
devoted to systems with finite number of degrees of freedom: the spring-mass systems.
Chapter 7 considers the dynamics of cable systems. Chapters 8 through 12 present
results for beams, curved beams, membranes, plates, and shells. Some practical in-
formation on the stress analysis of these structures is also included. Chapters 13 and
14 are devoted to vibration in fluid systems and the effect of a surrounding fluid on
the vibration of structural systems. Chapter 15 reviews the finite element computer
codes presently available for general vibration analysis. Chapter 16 presents data on
the properties of materials which are useful as inputs for vibration analysis.

The solutions presented in this book span the technical literature from the second
edition of Lord Rayleigh’s The Theory of Sound, published in 1894, to the journals
of 1978. While many of the solutions presented here can be traced to the pre-1930
volumes of Horace Lamb, A. E. H. Love, and Lord Rayleigh, the majority of the
results in this book were generated after 1960. Notable among the more recent results
are the cable solutions of H. Max Irvine, the multispan beam solutions of Daniel J.
Gorman, the plate solutions of Arthur W. Leissa, and the cylindrical shell solutions
of C. B. Sharma and D. J. Johns. The formats used in this book were adapted from
those developed by Raymond J. Roark, and Chapters 11 and 12 were born in the
compilations of Arthur W. Leissa. Those familiar with the work of these two fine
analysts will recognize its reflection in this book.
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1
DEFINITIONS

Added Mass—The mass of fluid entrained by a moving structure as it vibrates in a
fluid. The added mass of many slender structures is comparable to the mass of fluid
displaced by the structure. The natural frequency of vibrations in the presence of
added fluid mass is lower than that which would be observed in a vacuum. See
Chapter 14.

Beam—A structure whose cross-sectional properties and deflection vary along only
a single axis. A slender beam is a beam whose characteristic cross-sectional dimen-
sions are much less than the span of the beam and the distance between vibration
nodes; therefore, the inertia associated with local rotation is overshadowed by the
inertia developed in displacement and the deformation due to shearing of the cross
section is overshadowed by bending deformations.

Boundary Condition—A constraint applied to a structure independent of time.
Boundary conditions can be classified as either geometric or kinetic. Geometric
boundary conditions arise from geometric constraints. For example, the displace-
ment of a structure at a joint pinned to a rigid wall is zero. Kinetic boundary
conditions arise from force or moments applied to a structure; for example, a pinned
joint permits free rotation, so the kinetic boundary condition at a pinned joint is
zero moment. (See Pinned Boundary, Clamped Boundary, Free Boundary, and
Sliding Boundary.)

Bulk Modulus of Elasticity—The ratio of the tensile or compressive stress, equal in
all directions (i.e., hydrostatic pressure), to the change it produces in volume. B =
E/[3(1 - 2v)] for an isotropic elastic material, that is, a material whose properties
are the same in all directions. (Definitions of symbols are given in Chapter 2.)

Cable—A massive string. A uniform, massive one-dimensional structure which can
bear only tensile loads parallel to its own axis. The bending rigidity of cables is zero.
Cables, unlike chains, may stretch in response to tensile loads.

Cable Modulus—The rate of change in the longitudinal stress (axial force over cross-
sectional area) in a cable for a small unit longitudinal strain. If the cable is a solid
elastic rod, the cable modulus will be equal to the modulus of elasticity of the rod
material. If the cable is woven from fibers, the cable modulus will be less than the
modulus of elasticity of the component fibers. Typically, the cable modulus of
woven steel cables is about 50% of the modulus of elasticity of the steel fibers.

Center of Gravity—The point on which a body can be balanced. The sum over a
body of all elements of mass multiplied by the distance from any axis through the

1



2 FORMULAS FOR NATURAL FREQUENCY AND MODE SHAPE

center of gravity is zero. The center of gravity is also called the center of mass. (See
Chapter 5.)

Centroid—The geometric center of a plane area. The sum over a plane area of all
elements of area multiplied by the distance from any axis through the centroid is
zero. (See Chapter 5.)

Chain—A uniform, massive one-dimensional structure which can bear only tensile
loads parallel to its own axis. The bending rigidity of chains is zero. Chains, unlike
cables, do not stretch in response to tensile loads.

Clamped Boundary—A geometric boundary condition such that the structure can
neither displace nor rotate along a given boundary.

Concentrated Mass (Point Mass)—A point in space with finite mass but zero moment
of inertia for rotation about its center of mass.

Damping—The ability of a structure to absorb vibrational energy. Damping can be
generated within the material of the structure (material damping), by the fluid sur-
rounding the structure (fluid damping), or by the impact and scraping at joints
(structural damping).

Deformation—The displacement of a structure from its equilibrium position.
Density—The mass per unit volume of a material.

Elastic—A term applied to a material if deformations of the material increase linearly
with increasing load without regard to the sign or magnitude of the load. Many real
materials of structural importance are elastic for loads below the onset of yielding.

Free Boundary—A boundary along which no restraints are applied to a structure.
For example, the tip of a freely vibrating cantilever is a free boundary.

Isotropic—A term applied to a material whose properties are unchanged by rotation
of the axis of measurement. Only two elastic constants, the modulus of elasticity
(E) and Poisson’s ratio (v), are required to completely specify the elastic behavior of
an isotropic material.

Linear—A term applied to a structure or material if all deformations increase in pro-
portion to the load without regard to the sign, magnitude, distribution, or direction
of the load. Many structures of practical importance are linear for loads below a
maximum linear limit. Nonlinear behavior in a structure is ordinarily due to either a
material nonlinearity such as yielding or a geometric nonlinearity such as buckling.

Membrane—A thin, massive, elastic uniform sheet which can support only tensile
loads in its own plane. A membrane may be flat like a drum head or curved like a
soap bubble. A one-dimensional membrane is a cable. A massless one-dimensional
membrane is a string.

Mode Shape (Eigenvector)—A function defined over a structure which describes the
relative displacement of any point on the structure as the structure vibratesin a single
mode. A mode shape is associated with each natural frequency of a structure. If the



DEFINITIONS 3

deflection of a linear vibrating structure in some direction is denoted by Y(x, t),
where X is a point on the structure and t is time, then if the structure vibrates only
in the k mode, the deflection can be written as

Y(x, 1) = ¥i (x) vk (1),

where ¥y (x) is the mode shape, which is a function only of space, and y,(t) is a
function only of time. If the structure vibrates in a number of modes, the total dis-
placement is the sum of the modal displacements:

N
Y ,t= ~i.. it'
(x, t) izquoy()

Modulus of Elasticity (Young’s Modulus)—The rate of change of normal stress for a
unit normal strain in a given material. The modulus of elasticity has units of pres-
sure. For most materials, within the limits of linear elasticity, the modulus of elasticity
is independent of the sign of the applied stress. Some materials, such as wood, have
a directional modulus of elasticity.

Moment of Inertia of a Body—The sum of the products obtained by multiplying each
element of mass within a body by the square of its distance from a given axis. (See
Product of Inertia of a Body and Chapter 5.)

Moment of Inertia of a Section—The sum of the products obtained by multiplying
each element of area within a section by the square of its distance from a given axis.
(See Product of Inertia of a Section and Chapter 5.)

Natural Frequency (Eigenvalue)—The frequency at which a linear elastic structure
will tend to vibrate once it has been set into motion. A structure can possess many
natural frequencies. The lowest of these is called the fundamental natural frequency.
Each natural frequency is associated with a mode shape of deformation. Natural
frequency can be defined either in terms of cycles per second (hertz) or radians per
second. There are 27 radians per cycle.

Neutral Axis—The axis of zero stress in the cross section of a structure. The neutral
axis must pass through the centroid of the cross section of homogeneous beams if
the axial load is zero so that the beam supports only a bending load.

Node—A point on a structure which does not deflect during vibration in a given mode.
Anti-node is a point on a structure where deflection is maximum during vibration in
a given mode.

Orthotropic—A term applied to a thin lamina if the material properties of the lamina
possess two mutually perpendicular planes of symmetry. Four material constants are
required to specify the elastic behavior of an orthotropic lamina. Common examples
of orthotropic lamina are sheets of fiber-reinforced plastic or the thin plys of wood
that are glued together to form plywood.

Pinned Boundary—A boundary condition such that the structure is free to rotate but
not displace along a given boundary.
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Plate—A thin two-dimensional elastic structure which is composed of material in
the vicinity of a flat two-dimensional sheet. A plate without bending rigidity is a
membrane.

Point Mass (Concentrated Mass)—A point in space having mass, but zero moment of
inertia for rotation about its center of mass.

Poisson’s Ratio—The ratio of the lateral shrinkage (expansion) to the longitudinal
expansion (shrinkage) of a bar of a given material which has been placed under a
uniform longitudinal tensile (compressive) load. Poisson’s ratio is ordinarily near 0.3
and is dimensionless. Some materials, such as wood, have a directional Poisson’s
ratio. For most materials, within the limits of elasticity, Poisson’s ratio is independent
of the sign of the applied stress.

Product of Inertia of a Body—The sum of the products obtained by multiplying each
element of mass of a body by the distances from two mutually perpendicular axes.
(See Chapter 5.)

Product of Inertia of a Section—The sum of the products obtained by multiplying
each element of area of a section by the distances from two mutually perpendicular
axes. (See Chapter 5.)

Radius of Gyration of a Body—The square root of the quantity formed by dividing
the mass moment of inertia of a body by the mass of the body. (See Chapter 5.)

Radius of Gyration of a Section—The square root of the quantity formed by divid-
ing the area moment of inertia of a section by the area of the section. (See Chapter
5.)

Rotary Inertia—The inertia associated with local rotation of a structure. For example,
the rotary inertia of a spinning top maintains its rotation.

Seiching—The system of waves in a harbor which is produced as the harbor responds
sympathetically to waves in the open sea (also see Sloshing).

Shear Beam—A beam whose deformation in shear substantially exceeds the flexural
deformation.

Shear Coefficient—A dimensionless quantity, dependent on the shape of the cross
section of a beam, which is introduced into approximate beam theory to account for
the fact that shear stress and shear strain are not uniformly distributed over the cross
section. The shear coefficient is generally defined as the ratio of the average shear
strain over the beam cross section to the shear strain at the centroid. See Section 8.2.

Shear Modulus—The rate change in the shear stress of a material with a unit shear
strain. For most materials the shear modulus is independent of the sign of the applied
stress, although some materials, such as wood, may have a directional shear modulus.
G = E/[2(1 +»)] for an isotropic elastic material, that is, a material whose properties
are the same in all directions. (Definitions of symbols are given in Chapter 2.)

Shell-A thin elastic structure whose material is confined to the close vicinity of a
curved surface, the middle surface of the shell. A curved plate is a shell. A shell
without rigidity in bending is a membrane.
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Sliding Boundary—A boundary condition such that a structure is free to displace in a
given direction along a boundary but rotation is prevented.

Sloshing—The system of surface waves formed in a liquid-filled tank or basin as the
liquid is excited.

Speed of Sound--The speed at which very small pressure fluctuations propagate in a
infinite fluid or solid.

Spring Constant (Deflection)—The change in load on a linear elastic structure required
to produce a unit increment of deflection.

Spring Constant (Torsion)—The change in moment (torque) on a linear elastic struc-
ture required to produce a unit increment in rotation.

String—A massless one-dimensional structure which can only bear tension parallel
with its own axis. A string is a massless cable.

Viscosity—The ability of a fluid to resist shearing deformation. The viscosity of a
linear (Newtonian) fluid is defined as the ratio between the shear stress applied to a
fluid and the shearing strain that results. Kinematic viscosity is defined as viscosity
divided by fluid density.



2
SYMBOLS

Throughout this book, definitions of symbols are given at the top of each table and
in the text. In some cases special symbols have been defined. The symbols listed be-

low have

been consistently applied in all cases. These symbols generally follow

those used in the literature. One exception is that here I is used to denote all area

moments
of bodies.
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of inertia of sections and J is used to denote all mass moments of inertia

area (length?)

bulk modulus (force/area)

center of gravity or centroid, also torsion constant (length?)

modulus of elasticity (force/area)

shear modulus (force/area)

area moment of inertia (Iength?)

mass moment of inertia (mass X length?)

shear coefficient (dimensionless)

length

mass

load (force)

tension per unit length of edge (force/length) or length

tension (force)

mutually orthogonal displacements (Ilength)

speed of sound (length/time)

frequency (hertz)

acceleration of gravity (length/time?) or grams

deflection spring constant (force/length)

mass per unit length (mass/length)

load per unit length (force/length) or pressure (Chapter 14)

mutually orthogonal coordinates (length)

mode shapes associated with the X, Y, and Z displacements, respectively
(dimensionless)

angle (radians) or dimensionless constant

mass per unit area (mass/length?) or ratio of specific heats (dimensionless)

strain (dimensionless)

rotation (radians)

mode shapes associated with 8 rotation (dimensionless)

material density (mass/length3)

Poisson’s ratio

=3.1415926



