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PREFACE.
This volume contains the proceedings of the International
Symposium on ''Parametric Optimization and Approximation', held
at the Oberwolfach Research Institute, Black Forest, October
16-22, 1983. It includes papers either on a research or of an
advanced expository nature. Some of them could not actually
be presented during the symposium, and are being included here
by invitation. The participants came from Brazil, Bulgaria,
CSSR, German Democratic Republic, Great Britain, Israel,
Netherlands, South Africa, USA, and West Germany. We take
the opportunity to express our thanks to all those who
participated in the symposium or contributed to this volume.
We also thank the Oberwolfach Mathematical Research Institute
for the facilities provided.

August 1984.

Bruno Brosowski, Frankfurt a.M.

Frank Deutsch, University Park, PA
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A RITZ METHOD FOR THE NUMERICAL SOLUTION OF A CLASS
OF STATE CONSTRAINED CONTROL APPROXIMATION PROBLEMS

Walter Alt

Mathematisches Institut
Universitdt Bayreuth

Postfach 3008 N
D-8580 Bayreuth - ‘@\\

Introduction

This paper is concerned with a control approximation
problem which occurs in connection with the optimal heating of
solids. We consider a one-dimensional homogeneous metal rod
which is kept insulated at the left end, and is heated at the
right end, where the temperature is regulated by a control func-
tion. The problem consists of finding an optimal control such
that the deviation of the temperature distribution in the rod
at a fixed final time from a desired distribution is minimized;
at the same time the temperature has to satisfy certain con-
straints. We use a Ritz type method to approximate the original
problem by a series of discrete convex optimization problems,
and we derive error bounds for the extremal values of the dis-

crete problems.
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1. The control approximation problem

We consider the following problem:

1

(P) Minimize [ (y(T,x) = ¥op (X))
o

subject to y € c([o,T] x [0,1]), u € L”[0,T] and

2

2 dx

3 3%y _

(1.1) 3%——-‘5—0,
9xX
3 _

(1.2) =£(-,0) =0,
(1.3)  ay(, 1) + 3,1 =y,
(1.4) Y(OI') = 0,
(1.5) P, S u(t) < e, a.e. on [O,T].
(1.6) y(t,1) < n(t) vV t € [OlT]-

Herein T, a,ol, p2are given real numbers such that T > O, a > 0
and Py < Pyi Yo and n are fixed functions with Yp € L [O 11,
n € clo,T].

Let p € ]2,«] and u € P[0, T] be given. In L2[O,1] the
generalized solution y(u) of (1.1) - (1.4) has the series repre-
sentation

« t  =Ap (E-T)
(1.7) y(u) (t) = i:iv (1) g e u(r) dt v, VvV t € [0,T]

where the Ak resp. v, are the eigenvalues resp. eigenfunctionsof

k
the corresponding elliptic eigenvalue problem. The operator S

defined by
(1.8) su.= (y(u),y() (T)) v u € LP[o,T]

is a continuous linear operator from Lp[O,T] into
([o,T] x [0,1]) «x L2[O,1] (compare ALT/MACKENROTH [2] and MACKEN-
ROTH [5]).
By p, resp. p, we denote the canonical projection of
(fo,T] x [0,11]) x L2[0,1] onto c([0,T] x [0,1]) resp. B* 61T

Further we define
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(1.9) K .= {z € c(lo,T] x [0,1]) | z(t,1) < n(t) V t € [0,T]}.

Then problem (P) can be written in the following form:

W 2

(PA) Minimize Hp2511 °°yTII2
subject to u € L [0,T] and

(1.10) p, < ul(t) < oz(t) a.e. on [O,T],

(1.11) p,Su € K.

2. The Ritz method

For the numerical solution of problem (P) we present
a Ritz type method which defines a series of discrete optimi-
zation problems approximating the original problem. The original
control space is replaced by a finite dimensional one, and the
operator S is approximated by a finite series based on (1.7).
To this end let for i € IN numbers ni,ki,mi € IN be given and

decompositions

0=%_ <&, ¢ gus € =7,

o 1 ni
(2.1)
o = sl & sl < < s =T
o 1 mi

Let ut: [0,T] » IR be defined by

. i 1.
. 1 if t € [tv—l’tv]
(2.2) uv(t) = (v =1,...,n.)

(e} elsewhere

The original control space U = L7[0,T] is replaced by the finite
dimensional subspace of piecewise constant functions
(2.3) U, .= span {ui,...,ul ks
i
The operator S is approximated by the finite sum

ki t —Xk(t-T)
(2.4) (p.S.u) (t,x) .= s—v (1) [ e u(t) dr v, (x).
171 k=1 k o k
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With these notations we can formulate the discrete approxima-

tions to (P) resp. (PA) as follows:

e 2
(P)) Minimize szsiu yTH2
subject to u € Ui and
(2.5) Py < u(t) < e, a. e. on [O,T],
(2.6) plsiu € Ki

where the set Ki is defined by

(2.7) K, = {z € C(l0,T1x [0,1]) 1z (s}, 1) < n(s

Y

)

O,1,..,mi}.

< -

Problem (Pi) defines a finite dimensional quadratic optimization
problem which can be solved by a suitable numerical procedure.

In order to derive convergence results for the extre-
mal values of the problems (Pi) we need the following Slater
condition:

There is a control u € Lm[O,T] with (1.5) and

(2.8) =
(p,Su) (£,1) < n(t) v t € [0,T].
Let
o) T; .= max {t;-—ti_ll v o= 1,...,ni}
o; .= max {si-—st_1| v o= 1,...,mi}.

In ALT/MACKENROTH [3] we have shown the following result.

Theorem 2.1. Suppose that the Slater condition (2.8)

is satisfied and lim 1, = O, lim o, = O, lim k. = o, Then there
is a number iO € IN such that for i > io (Pi) has an optimal

solution and

lim inf (Pi) = inf (P).

100

The aim of this paper is to derive in addition error
bounds for |inf (Pi) - inf (P)|. To this end we use methods

similiar to those developed in ALT [1].
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3. Error bounds for the extremal values

We start by presenting three auxiliary results which

we need for our convergence analysis.

Lemma 3.1. Let U, Z be Banach spaces, K < Z, A € ¥ (U, 7).
Suppose that for every i € IN a subset Ki < Z and an operator
Ai € ¥(U,2) are given such that the following conditions are
satisfied.

(a) There is an U € U with Au € int K.

(b) 1lim A ;u = Au YV u € U.
i -0 .

(c) K < Ki’

Then there is a real number n > O, and for any sequence {ui} c U

with lim u, = u there is an io € IN with
j—oc0 L

(3.1) nB_ € A.u. - K, vV i>i_.
z i i o
Proof. By (a) there is a u > O with Au - uB, < K.

Let {ui} c U be a sequence with lim u; = u. From (b) and the

100
theorem of Banach-Steinhaus we obtain lim Aiui = Au. Hence,
there is an iO > O with Lo
-Au H i i

IIAiui Aul < 5 vV i > i,-
This implies

A,u, -nB. < K c K,

i~i z i

for n .= LW o

2

The proof of the following lemma is based on the proof
of theorem 2 in ROBINSON [6].

Lemma 3.2. Let U, Z be Banach spaces, C <« U, K c Z
closed convex sets, and A € ¥(U,Z). Suppose that for every i € IN

closed convex sets Ci c U, Ki c Z and an operator Ai € £(U,7)
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are given such that assumptions (b), (c) of lemma 3.1 and the

following conditions are satisfied:
(a') There is an u € C with Au € int K.

(d) For every u € C there is a sequence {ui} c U with
u, € C, and lim u, = u.
i i . i
i-0
(e) llul < r Vu €C and V u € Ci for some constant r.
Define D .= {u € U|Au € K} and

D. .= {u € U|A,u € K.}.
L; ik i

Then there is real number n > O such that the following holds:

If u, € C N D and {ui} < U is a sequence with u; € C, Vi € W

i
and lim u; = ug then there is a io € IN and a sequence {vi}
10

such that for all i » iO
(3.2) v, € C, N D,

i i, i

2r

(3.3) Hvi-uou < Hui-uoﬂ + TT'“Aiui_Ixuo“‘

Proof. Assumption (d) implies the existence of a

sequence {Ei} with Gi € Ci and lim u, = u. Hence by lemma 3.1
i
there are n > O and io € IN with

nBZ c Aiui--Ki YV i 3 10.

In particular we have Aiﬁi € int KV i >» i

Now let u €C ND, a sequence {ui} with u, € Cy,

lim u, = u_ and i » i be given. If A.u, € K, we choose v, .=u.;
150 i o o i i i

i
this implies v, € C., N D, and v, —u_lI
i i i i o

[

Hui-uoﬂ. Hence (3.2)
and (3.3) are satisfied. If A.u. ¢ K, we set d, .= d[A.u.,K.].
i~ i i i iTif'Ti
Then for any & > O there is a k, € K. such that z. .= A.u. -k
& i [¢) i~i 6
satisfies the inequalities

0 < llzéll < di + 6.
For ¢ € ]O,n[ we define

_ _ =1
2y o= = (n=e)llzgl™ 2.

It follows Hzeﬂswj—e < n and therefore z_ € nB

s Hence there

7"
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. . _ = : _ _ |
exists ks € Ki with z, = Aiui ke' With X .= [1+ (n s)Hzéu ]
we obtain O < A < 1 and

(1—)\)26 + Aze = Gz =

(1—A)(Aiui-k6) + A(Aiui-ks) =

Ai((1_>‘)ui+ Aui) - ((1—)‘)}(6 + Akg)
For vi .= (1—A)ui-fxui, ki .= (1—>\)k(S + XKé this implies vi € Ci’
A.v. = k., € K. and therefore v, € C, n D.. Further we have
s P i i i i i
HVi-uOH < Hui-uOH + Hui-viﬂ
and
Ilui-vill = llui- (1->\)ui->\uill = Xllui-uill-

- -1 —
From A < (n-e) " “lzgl, lzgh < d; + 6 and flu; —u;l < 2r we get

= -1
Xﬂui-uiu < 2r (n-g) (di-+6).
From this we finally obtain
2Y
”Vi - U.OH < Ilui - uoll + —n——e_(d[Aiui’Ki] + 8) .

By the fact that Au(3 €EK c Ki the proof is completed by letting

6 and & approach zero. o

Lemma 3.3. Let U, Z be Banach spaces, C <« U, K c Z
closed convex sets and A € ¥(U,z). Define D .= {u € U |Au € K}.
Suppose that u, € C N D and that there is an u € C with
Au € int K. Then there is a real number n > O such that for any
u € U there existsW € C n D with

(3.5  Ju-U < 2 (U -u i + lu-ugl) dlAu,X].

Proof. Define the multivalued function F : U - Z by
Au - K, ’ € C
F(u) =
[0} ; u ¢ C.

Then F is a closed convex function and by the assumptions of the

theorem there exists n > O with

nB, < F(uo-+Hu-uOHBu)-
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The assertion of the theorem is therefore a special case of
theorem 2 in ROBINSON [6]. o

In order to state our main result we introduce some
notations. The cost functional of problem (P) resp. (PA) is
denoted by f, i. e.

2

i) o= Hp2SLl— yTH2.

The cost functional of problem (Pi) is denoted by fi' i. e.

_ _ 2
fi(u) .= szsiu yT"2'
Further, if p € ]2,«] is given and g is defined by é + é =1
for p < @ and g = 1 for p = «», we can define a continuous func-
tion g by
1

o = Akqs
(3.6)  g(s) = =i, T(1-e ) Vs > 0.

k=1

We can now formulate our main result.

Theorem 3.4. Let u* be an optimal solution of (P),
and suppose that the Slater-condition (2.8) is satisfied. Let
p € ]2,~] and a sequence {ui} be given with oy < ui(t) < p, a.e.

on [0,T] and lim Hui—u*ﬂp = 0. Then there are constants Ci1Co
i-co

CyrC, and an iO € IN such that for i » iO the following holds.

(3.7) (Pi) has an optimal solution u;.
* - * - - *
(3.8) £, ut) - flu*) < c, Is; -sl + c,llu; -u Hp
* - * -
(3.9) £ (u*) £, uh) < c,lis; -si + c, 9(o;)

where o; is defined by (2.9).

Proof. Assertion (3.7) was shown in ALT/MACKENROTH [4].
To proof (3.8) and (3.9) we define U = LP[O,T],
4

{u € U] u satisfies (1.5)}, C; =Cnu; and

r = max {Ipll,lpzl}. Further we will use the fact that there are

constants 51,82 with



