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Preface

The development of statistical methodology for the analysis of spatial data
has seen considerable advances since the publication of the seminal work
of Cressie (1993). In particular, the development of fast computational
algorithms for sampling of complex Bayesian models (most notably Markov
chain Monte Carlo algorithms) has allowed a wide range of problems to
be addressed which hitherto could not be directly analysed. Many spatial
problems can be considered within the paradigm of hierarchical Bayesian
modelling and so the emphasis within this volume will lie within that area.

The aim of this volume is not to present a general review of spatial statis-
tical modelling but rather to focus on the area of spatial cluster modelling.
Hence the theme of this work is the highlighting of the diverse approaches
to the definition of clusters and clustering in space (and its adjunct space-
time), and to present state-of-the-art coverage of the diverse modelling
approaches which are currently available. In Chapter 1 we provide a brief
historical introduction to the subject area and, in particular, compare con-
ventional and spatial clustering. In addition this chapter introduces the
notation and different areas of study explored. After this initial chapter
the volume is split into 3 parts, each relating to a specific area of cluster
modelling. Part I deals with point and object process modelling, Part 11
involves spatial process modelling, while Part III contains papers relating
to spatio-temporal models.

One of the features of modelling spatial data is the need to use fast
computational algorithms to be able to evaluate the complex posterior dis-
tributions or likelihood surfaces which arise in spatial applications. The
1980s saw the development of Markov chain Monte Carlo algorithms based
on the Gibbs and Metropolis-Hastings samplers, and witnessed rapid de-
velopment of models for complex spatial problems. Not only could existing
models be sampled from but newer more sophisticated models could also
be developed and applied. Often these models are of a hierarchical form
so this naturally leads to the Bayesian paradigm being of importance in a
great deal of the work.

As the potential fields of application for spatial methods are so wide
we cannot hope to cover all of them. Nevertheless the chapters here do
make reference to data in astrophysics (Chapter 10), spatial epidemiology
(Chapters 5,7.8,14), ecology (Chapters 4,11), imaging (Chapter 13), ge-
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ology and the geosciences (Chapters 6,4,7,9,12). In addition, the volume
provides a useful insight into the current issues and methodology used for
spatial cluster modelling. We have specifically included the burgeoning area
of spatio-temporal modelling as an important, extension to standard spatial
data analysis and Chapters 12,13,14 specifically deal with this topic.

Finally we would like to thank all the contributors for their timely and
thoughtful articles. In addition, we acknowledge the help of the staff at
CRC Press, in particular Kirsty Stroud, Jasmin Naim and Helena Redshaw
for their continued support and encouragement in the production of this
volume.
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CHAPTER 1

Spatial Cluster Modelling: An
Overview

A.B. Lawson D.G.T. Denison

1.1 Introduction

When analysing spatial data one is often interested in detecting deviations
from the expected. For instance, we may be interested in the answers to
questions like, “Is there an unusual aggregation of leukemia cases around a
nuclear power station ?” or, “Where is it likely that the air pollution level
is above the legally allowed limit ?”. In both cases the focus is on finding
regions in (usually two-dimensional) space in which higher than expected
counts, or readings, are observed. We shall call such areas clusters and
determining their nature forms the focus of this work.

This volume brings together a collection of papers on the topic of spatial
cluster modelling and gives descriptions of various approaches which begin
to solve the problem of detecting clusters. The papers are statistical in
nature but draw on results in other fields as diverse as astrophysics, medical
imaging, ecology and environmental engineering.

Two examples of the sort of spatial processes that we shall consider here
are displayed in Figs. 1.1-1.2. Fig. 1.1 is an example of a point process,
where each dot is an “event” (in this case the occurrence of a cancer).
Here it is of interest to determine whether the cases are more aggregated,
or clustered, than expected and whether the clustering relates to the loca-
tions of any possible pollution sources. To assess this a background control
disease map (which is not shown) is often used to represent the expected
variation in the distribution of cases; this is often a function of the relative
population density.

Fig. 1.2 is an example of a dataset that consists of observations of an
underlying spatial process at a number of locations. The usual aim of an
analysis of this type of data is to determine the value of the spatial process
at all the locations in the domain of interest, assuming that each mea-
surement is only observed in the presence of a random error component.
However, we may also be interested in determining areas where the pro-
cess is above some predefined limit or even, in some sense, above average.
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10" larynx cancer case locations
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Figure 1.1 An example of a point pro-
cess: The Larynx cancer case event
map (Diggle 1990) relating to cases in
Lancashire, UK from 1974 to 1983.

y-coord

x-coord

Figure 1.2 An example of observations
of a spatial process: The Piazza Road
data (Higdon et al. 1999). Each dot
represents a location where a measure-

ment of the dioxin concentration in an
area around the Piazza Road is taken.
The size of the dots gives an indication
of the observed measurements, with
larger dots representing higher concen-
trations.

Spatio-temporal data will also be looked at in this volume. In these ex-
amples either measurements or point processes are observed over time and
similar questions arise but now clusters can occur in space, in time, or even
in space and time jointly.

The analysis of spatial clustering has had a varied history with develop-
ments often resulting from particular applications, and so these develop-
ments have related to varying interest over time in different applications.
For example, much work in the 1960s and 1970s on clustering developed
from ecology applications (e.g. Diggle 1983, Ripley 1981), whereas an in-
creased interest in image analysis in the 1980s led to associated advances
in image segmentation and object recognition {(e.g. Besag et al. 1991). In-
creased public and scientific interest in environmental hazards and health
in the late 1980s and 1990s, has led to increased emphasis on cluster de-
tection in small area health studies (Lawson et al. 1999, Elliott et al. 1999,
Lawson 2001). The context of this historical development in relation to
methodological progress is discussed more fully in the next section.
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1.2 Historical Development

The analysis of clustering has a long history in statistical science. In one
dimension the analysis of aggregation of data around a preferred location
is at the heart of much statistical work, whether the focus is on the mean
tendency of the aggregation of data or on its spread or variance. In addition
in cluster studies the location of the maximum aggregation may also be of
interest (modal property). In two dimensions, the natural extension of these
ideas is to a two-dimensional aggregation, perhaps around a single point.
In this case the centre of the aggregation may be defined either by mean
or modal properties while the variance or spread of the aggregation can be
defined around the putative centre which is now a two-dimensional location.
In the case of spatial data these quantities have obvious interpretations as
cluster centre location and cluster spread.

In the spatial domain, it is possible to view a clustered pattern in different
ways depending on the focus of the analysis. First, it may be possible
to conceive of the pattern as the realisation of a random process which
produces aggregations as a result of the global structure of the process,
whereby a small number of parameters control the scale and frequency of
aggregations but the defined process does not parameterise the locations of
the aggregations. This is akin to the geostatistical view of random processes,
where the intensity or local density of events is defined by, for example, a
spatial Gaussian process. The peaks of this process would correspond with
local aggregations, but no parameterisation of the locations is made. Recent
examples of this approach can be found in Cressie (1993) and Diggle et al.
(1998). Essentially, this approach regards the aggregations as produced
by random effects which are governed by global model parameters, i.e. the
degree of aggregation and spread of the aggregations would be controlled by
a small number of global parameters. This form of random effect modelling
is at the heart of much hierarchical Bayesian modelling in this context,
and in the literature of spatial applications the term clustering or cluster
modelling is used to refer to such random effect modelling. An example
from small area health studies is Clayton and Bernardinelli (1992).

The second approach to the modelling of clusters is to include within the
modelled process specific elements which relate to cluster location and how
these locations relate to the surrounding data. Much of the early work in
stochastic geometry relating to point processes examined clustering of point
processes and models such as the Neyman-Scott and Cox cluster processes.
The fundamental feature of these processes was the definition of a set of
cluster centres around which the offspring (data) lie. The term offspring
comes from the idea that the clustering could arise from a multigenerational
process. The variation in the local aggregation of data is thought to be
summarised by the local density of events around the cluster centre set. In
the case of a Neyman-Scott or Poisson cluster process the local density is



