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Preface

All my earlier books (Dynamic Analysis and Feedback Control [1962]; Measurement
Systems, five editions [1966-2004]; System Dynamics [1972]; System Modeling
and Response [1980]; Control System Principles and Design [1985]; Engineering
Experimentation [1995]; and System Dynamics: Modeling, Analysis, Simulation,
Design [1998]) were designed as engineering textbooks to be used as aids in
teaching undergraduate and graduate courses in the areas of system dynam-
ics, measurement, and control. They were thus organized to progress in a
carefully designed sequence of chapters, which led the student from simple
basic concepts toward progressively more comprehensive and practical views
of the field under study. As is usual in textbooks, each chapter included home-
work problems designed to stimulate students’ personal understanding of
important concepts. While these books were originally intended for teaching
purposes in engineering schools, their judicious blending of useful theory
with practical hardware and design considerations made them appealing
also to engineering practitioners who wanted to update their education in
specific areas.

This book is still devoted to the same general areas (system dynamics,
measurement, and control) but departs from the textbook format to address
the needs of practicing engineers working in those fields, which are some-
times collected under the heading “instrumentation.” As is common with
this type of book, homework problems are not included. While all the chap-
ters certainly have a common interest in the overall field, each is largely self-
contained in addressing an important subarea of the subject. As such, they
are readily accessible to readers with a specific interest in improving their
expertise in the chosen topic. While the book is not designed for a specific
academic course, it could be profitably used as additional enrichment read-
ing for any number of specific courses, or possibly for a single seminar-type
experience.

Central to all the chapter treatments is the close integration and widespread
use of appropriate software, such as MATLAB®/Simulink® (dynamic system
simulation), Minitab® (statistical tools), and Mathcad (general engineering
computation). To facilitate readers’ comprehension of software applications,
detailed appendices in the form of sharply focused and user-friendly mini-
manuals are provided for MATLAB/Simulink and Minitab. (Most Mathcad
applications are sufficiently self-explanatory and user-friendly that addi-
tional explanation is not warranted.) While engineering software packages
provide extensive printed manuals and/or online help, in my experience
these aids are too voluminous and unfocused to allow efficient use for spe-
cific application areas, such as instrumentation. These appendix manuals are

xi



xii Preface

specifically addressed to the text’s application areas, and thus can be used by
the reader in an efficient and time-saving manner.

This new book is largely based on a series of homework projects that I devel-
oped over many years for an advanced measurement course/lab populated
by a mix of engineering seniors and graduate students. This experience was
valuable in showing me the best ways to present the material, which was
continuously revised over the years. The homework project manual included
extensive notes that led the student through the particular topic and required
certain calculations and explanations at each of the steps in the develop-
ment. In adapting this manual to the needs of this book, I replaced the home-
work sections with a complete presentation and explanation of the solutions
required of the students. I also adapted the format to meet the needs of the
new audience, and augmented the technical material with any new develop-
ments that I was familiar with. I hope this book will be a useful and interest-
ing learning tool for engineers in the instrumentation field.

Ernest O. Doebelin

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508 647 7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com
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1

Introduction to Statistical Design of
Experiments: Experimental Modeling of
a Cooling System for Electronic Equipment

1.1 Introduction

The statistical design of experiments (DOE) is the subject of entire large books
and academic courses. Its various techniques are widely practiced in indus-
try and have achieved many successful practical applications. Many engineers
have little or no familiarity with this important approach and the purpose of
this chapter is essentially to raise your consciousness of this topic. The devel-
opment of true expertise must of course depend on further study and practical
experience. Hopefully this introduction will at least make you aware of the
general approach so that you will consider it when facing new experimental
projects as they arise. Widely available statistical software (such as the Minitab
whose use is explained in Appendix B) makes the application of the meth-
ods much easier and quicker than was the case in earlier years. Because I was
convinced of the importance of making these methods accessible to all under-
graduate mechanical engineers, I included two chapters on these topics in a
textbook published in 1995* Chapter 2 of that book introduces general basic
concepts to readers with no background in statistics while chapter 4 devel-
ops the methods of DOE. My idea was that the existing books and courses
required so much time and effort that most engineers and students would not
make this investment, so I tried in these two chapters to simplify and stream-
line the material by extracting what I thought were the essential ideas and
methods. If in the future you want to go beyond what is presented in this
short chapter, you might start with these two chapters since they will “get you
going” in the shortest time. Of course, if you find that you use these methods
regularly, you might go to the more detailed texts (or short courses offered by
many companies and software suppliers) for deeper background. Chapters 2
and 4 of my 1995 textbook provide links to such resources.

* E.O. Doebelin, Engineering Experimentation: Planning, Execution, Reporting, McGraw-Hill,
New York, 1995.



2 Instrumentation Design Studies

1.2 Basic Concepts

We now present, in a severely condensed (but hopefully still useful) form, the
basic concepts of DOE. The problems dealt with can be described as follows.
We have, say, some manufacturing process that produces a product or mate-
rial that has one or more attributes associated with quality and/or cost. This
quality parameter depends on several process variables that we are able to
set within a certain range of values. The process is sufficiently complex that
physical/mathematical modeling to reveal the relation of the quality param-
eter to the set of process variables has proven not possible or insufficiently
accurate. We therefore propose to run an experiment in which we “exercise”
the process by setting the process variables at several combinations of values
and then measure the value of the quality parameter that results. We then
analyze this data to develop a mathematical model, which predicts the effects
of the process variables on the quality parameter. Many times such model-
ing allows us to find which variables are the most significant, and also the
optimum combination of process variable settings; that is, one that maximizes
quality or minimizes cost.

While the study of manufacturing processes is perhaps the application of
most economic significance, DOE methods are directly applicable to other
situations. For example, the NASA Johnson Space Center (Houston, Texas)
ran experiments on the Space Shuttle’s life-support system, which removes
water vapor and carbon dioxide from the cabin atmosphere. The rate of
removal of carbon dioxide was the quality parameter and the process vari-
ables were: temperature of a bed of absorbent material, partial pressure of
water vapor in the inlet stream, partial pressure of carbon dioxide in the
input stream, and total gas-flow rate. Physical/mathematical modeling of
this system had not provided a good understanding of process behavior or
reliable predictions of the effects of the process variables on CO, removal
rate, so an experimental approach was undertaken. (More details of this
application, including a complete set of real-world data and its analysis to
provide a useful model are given at the end of this chapter.)

Finally, DOE methods are used for computer experiments, where the data are
generated, not by a physical experiment but rather by a computer simulation*
For example, a finite element analysis (FEA) study of a machine part might
be interested in the effects of various dimensions and material properties
on the stress, deflection, or natural frequency. One can, of course, run such
a simulation over and over with various combinations of input parameters
in an attempt to find parameter values which minimize stress or deflection,
or maximize natural frequency. Since each such run may be quite expen-
sive, and the search for the optimum lacks much guidance as to “which way

* A. Rizzo, Quality engineering with FEA and DOE, Mechanical Engineering, May 1994,
pp- 76-78.
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to go,” this approach requires many runs and thus may be quite inefficient.
DOE methods allow us to choose a relatively small number of parameter
combinations to run, formulate a model relating our quality parameter to
dimensions and material properties, and then use this model to predict the
optimum combination.

1.3 Mathematical Formulation

With the above background, we can see that all these applications can be
thought of mathematically as a problem of finding a functional relation
between a set of process variables and some quality parameter. In DOE par-
lance, the process variables are called factors and the quality parameter is
called the response (y). Mathematically

Y =bo+b fi(x1)+ by fo(x2)+bs f3(x3)+-- (1.1)

Here the fs are functions which can involve any of the process variables
in any way. If we call the process variables x,, x;, x, ... then, for example,
f, might be /x,(x,/x.). The standard methods of DOE require that the func-
tional relation in Equation 1.1 be linear in the coefficients b, but the f(x) functions
can take any form. While the restrictions put on Equation 1.1 prevent the use
of certain kinds of functions, this form is sufficiently versatile to meet most,
but not all practical needs. The advantage realized by the restrictions is that
the solution for the unknown b values is readily accomplished by routine
computerized methods of linear algebra. An experiment consists of choosing
the functional forms of the f(x)’s, running the experiment to get a numeri-
cal value for y (the dependent variable) that results from each set of x’s, and
then analyzing these data to find the numerical values of the b’s. We have to
use at least as many sets of x’s as there are b’s in our model if we want to get
a solution (n linear equations in n unknowns). Usually we use more sets of
x’s, which makes the equation set overdetermined and requires use of least-
squares solution methods, but these fortunately are also part of standard
linear algebra. Each set of x’s and the associated response y constitutes one
run of our experiment.

While Equation 1.1 allows a very large variety of functions to be used, many
useful applications employ a much more restricted class of functions. A major
class of such applications is the so-called screening experiment. Here, we have a
situation where we have identified, by using our familiarity with the physical
process, a number (sometimes as large as 10 or 15) of process variables (factors)
which might influence the quality parameter of interest. We want to run a
frugal experiment that will narrow this rather long list down to a few factors
that really matter, which we will then study in more detail. Such experiments
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often use only two values of each process variable, a high value and a low
value. Since we generally know the allowable ranges of the process variables,
we can choose these high and low values numerically for each process vari-
able. (An approach to multivariable experimentation much used in science
and engineering is to hold all variables except one at constant values and then
change this one variable over some range, thus isolating the effect of this vari-
able. Doing this in turn for each of the variables, we hope to discover use-
ful relations. While such an approach is common and can lead to useful
results, the whole premise of DOE is that a more efficient method lets all the
variables change simultaneously.) Thus the next step in the DOE procedure is to
define the combinations of variable settings that will be used; each such com-
bination is called a run of the experiment. For example, a run of a four-factor
screening experiment might be to set all four factors to their individual high
values. Another run might be to set factors 1 and 2 at their high values and
factors 3 and 4 at their low values. While one might use “common sense” to
define the set of runs, more systematic and efficient ways are available.

1.4 Full-Factorial and Fractional-Factorial Experiments

If there are k factors and each is to be restricted to two values, it becomes
clear that to explore all possible combinations will require an experiment of
2k runs. Such an experiment is called a full-factorial type. When k gets large, a
full-factorial experiment can be prohibitively expensive in time and money,
so we sometimes use fractional-factorial experiments. These use a carefully
chosen subset of the runs of the full factorial, reducing the amount of infor-
mation we can glean, but also cutting the costs. From Equation 1.1, however,
it is clear that to find, say, four b values, we must have at least four runs
(four equations in four unknowns). Fractional-factorial experiments usually
define their runs using an orthogonality principle. Our abbreviated presen-
tation will not attempt to explain this concept, and fortunately, standard sta-
tistics software (such as Minitab) provides the desired run definitions. The
most common screening experiment attempts to find only the so-called main
effects of the factors. Then Equation 1.1 takes the simple form:

y=b0+b1xl+b2x2+b3X3+‘“ (12)

where the x’s are now the factors (independent process variables) themselves.
That is, we seek only the linear effects of the individual factors. This simple
model has some theoretical foundation in that any smooth nonlinear func-
tion can be approximated (for small changes away from some chosen operat-
ing point) by linear terms. (For y = f(x), the tangent line to the curve and for
z = f(x, y), the tangent plane to the surface give a geometrical interpretation.)
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Sometimes, the model will benefit from the so-called interaction terms such as
b,x,x, (two-factor interaction) or b;x;x,x; (three-factor interaction), with inter-
actions higher than two-factor being very rarely used. If Equation 1.2 were to
be augmented with higher powers of factors, such as bx], we would find that
the analysis software would fail; to deal with such terms we would need a
screening experiment which uses three settings (high, medium, low) for each
factor, which expands the scope and cost of the experiment, but is sometimes
necessary. The intuitive reason for this behavior is that two points can only
determine a straight line; it takes three to allow curvature.

An important consideration in choosing between full-factorial and fractional-
factorial experiment designs is the issue of confounding. In a full-factorial
experiment we are able to distinguish both main effects and interactions.
This capability is lost, to some extent, in fractional-factorial experiments; the
main effects and some interactions are said to be confounded. The degree of
confounding is given by the resolution level of the design; common designs
being designated as Resolution III, Resolution IV, or Resolution V. Resolution
III designs have the smallest number of runs, but can only isolate the main
effects of the factors; interaction terms cannot be reliably identified. Resolution
IV designs require more runs, but can find main effects and two-way inter-
actions. Higher order (three-way, four-way, etc.) interactions are confounded
and thus not identifiable. Resolution V designs can find main effects, two-
way interactions and three-way interactions. Since three-way interactions
are not common, most fractional-factorial designs use either Resolution 3 or 4.
See the appendix material on Minitab for further details on this topic.

1.5 Run-Sequence Randomization

Another consideration is that of run-sequence randomization. If an experiment
has, say, 8 runs, does it matter what sequence we use in actually perform-
ing these runs? There are a number of possible reasons for randomizing the
sequence of the runs rather than blindly using a nominal sequence given by
common sense, some book, or software. When we originally list the factors
which we believe effect the process response variable, there are always some
other factors that we consciously or unconsciously leave out of our list. Often
these are subtle effects of the human operator who carries out the experi-
ment. If operators are somewhat inexperienced, their task performance
may improve, due to learning as they go from the first runs to the last; this
can bias the results. On the other hand, operators may become fatigued as
they work through the sequence causing poorer performance later in the
sequence. If an apparatus is operated at several different power levels, as we
change from one run to the next, we approach the new steady-state condition
through some sort of transient. These transients usually approach the new



