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PREFACE

Geometry is the art not to make calculations.

The International Centre for Mechanical Sciences has a long-standing tradition of

advanced schools in coding theory and information theory, started as early as 1970 (cf
the list of volumes in this series at the e;d of this book). In 1983 a rather exciting event
took place, namely an advanced school on the new subject of cryptology (queer indeed,
that the the century-long art of secret writing should be called new!). The 1983 meeting
(¢cf volume n. 279 in this series) has by now entered the history of contemporary
European cryptologic research, preceded as it is only by one similar event in Burg
Feuerstein, Germany, in 1982, and followed by the 1984 workshop at the Sorbonne of
Paris, which was the first of this sort to bear the by now well-established name of
Eurocrypt.

So, in a way, the Udine meeting was Eurocrypt number zero, second in a list whose
origin is curiously set at n= -1.

After this, CISM kept secretive for several years on the subject of coding, be it
source coding, channel coding or ciphering. In 1989 the second editor, M. Marchi, who
is a “pure” geometer, having heard about the spectacular success that finite (pure!)
geometries were experiencing in the domain of authentication schemes (a very matter-of-
fact subject nowadays, as it has so much to do with the proper handling of our credit
cards), decided to appease his curiosity and contacted the third editor, A. Sgarro, an
information theorist active in Shannon-theoretic cryptology. From their conversations the
idea of this school originated; the first editor, G. Longo, himself an information theorist
but also a writer, added his experience to their enthusiasm. The result was a delightful
week during which students and researchers alike were given the opportunity to meet, to
exchange ideas, to get along in their field, and, why not!, to make friends. About fifty
people participated, coming from fifteen different countries. Geometers and coding



theorists (not necessarily distinct persons) worked shoulder to shoulder in the historical
Palazzo del Torso, the beutiful 16th-century site of CISM; we are confident that these
contacts helped to blur the largely artificial borders between “pure” and “applied”
mathematics.

While classes took place in the Palazzo del Torso, conversation groups could
spread all over the charming town of Udine, which is a fertile crossroads of European
cultures, situated as it is at the intersection of Latin, Germanic and Slav areas. We are
particularly proud of this fact in this 1989 of wonders, which, we firmly hope, will open
an age of thriving for what was often and rather bitterly called the old continent.

The editors: Giuseppe Longo, Mario Marchi, Andrea Sgarro
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LECTURES ON GALOIS GEOMETRIES
AND STEINER SYSTEMS

G. Tallini
Universita La Sapienza, Roma, Italy

ABSTRACT

The paper consists of four lectures held at "Centre International des
Sciences Meccaniques" of Udine (Italy), June 1989. Their content is
the following. General concepts on Galois geometry and Steiner systems.
The theory of h-sets in Steiner systems, with particular attention to
Galois spaces. The theory of blocking sets, the even and odd typme sets

in a Steiner system. Applications to Tinear error correcting codes.



2 G. Tallini

1. GALCIS SPACES

Let o he a nrime, ZD the field of the residue classes mod p, g(x)
a polynomial with coefficients in Zp,hirreducib1e in Zp and of degree
h. We call Galois Lield of order q = p the field GF{q) = ZD[X]/(g(x)),
algebraic extension of Zp by t;e polynomial g(x). We prove that every
tinite field has onder q = p [p a prime) and it is isomonphic 2o a
Galois tiedd. Moreover, fox every pnime p and integer h a Galois field
of onden q = ph exists and it is undque up Lo an iwomorphism.

For any integer r >2 we denote by PG(r,q)the projective space of di-
mension r over GF(q). The points of PG(r,q) are therefore the ordered
(r+1)-tuples of not all zero elements of GF(q), determined up to a non
zero multinlicative factor in GF(q). A subspace Sd of dimension d in
PG(r,q) is the set of points whose coordinates satisfy a system of r-d

Tinear homogeneous independent equations.

We set
% i
6y * ! q . (1.1)
i=0
We prove:
[. - Jn PGlr,q) a subspace Sd’ 7<d<nx, has 0, points:
ISdl =0y - (1.2)
In particulan:
[PG(r,q)]| = 0. (1.3)

II. - The number of hyperplanes, 54_7, of PGlrn,q) is e It Lod-
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dows that the numben of Sd 7’4 belonging %o a Sd of PGln,q) is ed.

IIT. - Jn PGlr,q) the number of hyperplanes through a S/z—d—7 L4

[¢2]

IV. - e denote by Y d ¢ 7 <d <a-1, the number of subspaces Sd

of PGlnr,ql). T2 is:

/ o (1.4)

L

V. - In PGlr,q) the number of Sa’,d through a given Sm, m>0, is

Y i1 ,d-m-1,q

2. STEINER SYSTEMS S(2,k,v)

A Steinen system S(2,k,v) (or a 2-(v,k, 1) design) is a pair (S,L),
where S is a set whose elements we call points and L is a family of
narts of S whose elements we call lines such that:

[S] = v; VeelL = |o| = k. (2.1)

Lhrough two distinct points there is a unique line:

VPQeSPHI=dl vel: P,Q € (2.2)

For example PG(r,q) with respect to its lines is a S(2,q+],er=

r
i
= ).
1'%0 q
e denote by F_ the set of lines of S(2,k,v) through a point P of
[l
S. Tt ds:

¥PesS , |FD| = (v-1)/(k-1) (2.3)
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Counting in two different ways the pairs (P,p) where PeS, gel, Pey,

we have v.|FO| = |Llk, then (see (2.3)):
L] = v{v=-1)/k(k-1) . (2.4)

Therefore a necessary condition in order a S(2,k,v) exists, is the fol-

Towing:
ro= (v-1Uk-1) , b = v(v-1)/k(k-1) (2.5)
are both integens.

If PeS and ¢€Ll, P ¢s, we denote by « the number of lines through

P not meeting the line ¢ (parallel to ¢). It is:
u=nr-R (2.6)
We have:
O<u=r=-k=1(v-1)/(k-1) - k =v>klh-7) + 1 = h? = h + 1
It is:
u=0 =>v=~kR-h+1<=>BLUELIAL 2 |ANL=1] < (2.7)
=> 5(2,kR,R?~ R + 1) is a projective plane of onder g=k-1,
S(2,/€,f{2—k+7/ = 5(2,(g+7,q2+g+7/ = |L| = |SI = (}24. q + 7’-

VPeS, WeL, |a] = g+7 = |Fp|, Lon example PG(2,q).

u=17%>v = k?*<=>WPeS,KLelLFIL'EL: PEL ,L'NL =0 (2.8)
(L' parallel 2o 1)) <> S(2,k,k?) is an alline plane of



Galois Geometry, Steiner Systems

onden k, for example AG(2,q), kR = q.
We call subspace of S(2,k,v) a subset T of S such that:
P,QeET => the line PR<I. (2.9)

Obviously @, the points, the lines, S, are subspaces. Moreover every
subssace T (|T]>2) is a S(Z,k,vT), with vTiv and, if T#S, Vi = [T <r.
The family X of subspaces of (S,L) is a closure system,that is

Ssa: (2.10)

){7,}. , [ €L => N 7 €=z
L A€ 4 L

If XSS, the closure, X, of X is the intersection of all subspaces
containing X, that is the minimald subspace containing X.

A set 7 of points of S is called .independent if:

x€T => x€(7 - {x}. (2.11)
A base of (S,L) is a maximal independent set of S.

(S,L) is a matroid if:

VXSS, ¥V 7, 7" maximal independent condained in X => (2.12)
=< |71 - [77].

If (S,L) ic 2 matroid we 4d=2fine:

rank X = |7|, 7 maximal independent of X, (2.13)

diml S, L) = nank S - 1.
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I¥ {S,L} is & Galois space PG{r,q). tke subspaces of (S,L) are the
subspaces of PG(r,q). The closure of X< S is its linear closure in

PG(r,q). Moreover PG(r,q) is a matroid and dim(S,L) = r.

3. GENERAL CONCEPTS ABQOUT h-SETS OF A S(2,k,v)

A h-set of S(2,k,v) = (S,L) is a subset H consisting of h points
of S. We classify such sets with respect to their behaviour with the
Tines of (S,L).

We define s-index character of # the number tS of lines meeting

H in s points, 0<s <k. It is:

o
1

o = Number of external lines to H,

t, = Number of tangent lines to H,

t, = Number of 2-secant lines to H,

ts = Number of s-secant lines to H,

t|< = Number of lines belonging to H.
He nrove:

I. - The characters of a h-sget of St2,k,v) satisty the Loddowing

equationas:
k
4‘.4 =b = viv-7)/k(k-7),

4=0

R

Vo4 1:4 =hana=hlv-7)/(k-17), (3.1)
4=0

R

) 4/4—7/:54 = hlh-17).
4=0

8y (3.1), and (3.1), we have:
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¥ 42):4 = Wlh=1+a) = h[h=1 + (v=1)/1k=7)]. (3.2)

4=0

We say that H is an m-characten set, if exactly m characters are
different from zero. Let (nl,nz,....nr) be integers such that:0<n, <
$ My Sowes nr <k. We say that H is of class [n, ,nz,...,nr] it tn = 0,
¥n#n,n,....n. We say that H is of type (n, ,n, ,...,nm) if it is
of class [n,,nz,...,nm] and tm# 0 (i=1,2,...,m).

The study of the h-sets of S(2,%,v) may be done by increasing the
number of non-zero characters. We have:

II. - 7 # has a unique character, either H=0o0nH =35, that is
non-inivial one-characten sets don'zt exixit.
Proof. If H #@, H # S, a point P€H and a point Q €S - H exist. Let be
n=|HNe|, 2 €L. If we range the points of H, different from P, on the
r lines through P, we have |H| = r(n-1)+1. For Q we have similarly
lHI"= r.n, whence rn = r(n-1)+1, a contradiction (since r>k>1).

Assume H has two characters, so that it is of type (m,n), with

0 <m <n <k. By (3.1) we have:

H of type (m,n) => t'rz = (nb-hr)/(n-m)}, tn = (ha-mb)/(n-m)
h?2 = A1 + (nem=-7)2] + mn b = 0 (3.3)

A= |1« (n+m=1)2]%? = 4 mn b is a square.

Moreover we prove:

I11. - Sets of type (0,k) don't exist. The sets of type (1,R) are
the subspaces of S(2,R,v) such that eveny line meets them (we call such
subspaces, T, paimes of S(2,k,v] and we have |N| = 2). The sets H of

type (0,n), n <k, are such that:
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|| = A = (n-7)n + 1 ,
PEH, % = #n-secant Lines through P = n - (2-1)/n, (3.4)

n divides a-1.

the sets H' of Zype (m,k) ane the complements of those of type (0,n =

= A-m/, whence:

s[ﬁ'l =V = (Rem=T)n ~ 1, (3.4')

"‘% - m divides n - 1.

IV. - Cvery set of class [0,7,kR] of S(2,k,v) is a subspace and
conversely.

We call ‘4;m,n/-set of S(2,k,v) a h-set H (# @,S) such that:

m= min [#NH| , n = max |2NH| . (3.5)
5, €L 2 €L
.MH#G
We have:
h-m+ (r-1)n , (3.6)
t,=0,n"k = h>n+ (r-1)m, (3.7)

Let M,Il be two integers such that 1 <M <m, n<N. By (3.1), (3.2)

for any (h:;m,n)-set H of S(2,k,v) we have:

N N N N
0z o (N-s)(s=M)t = -MNJt + (MN)ist - Ys®t -
i1 2 M M M s

= - MN(b-t,) + (M+N)hr - h(h-1+r) =
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= - h? + hlr(MN-1) + 1] - MN‘D-t )
that is:

0 < (/\’—4/(4—/’1/1:4 = =h® + Al MeN=T) + 7] = MV1 b=t ) (3.8)

e

It follows:

) VL, >h? — h(alsN-7) + 7] + NO (3.9)
’ =n, M=m, H is of cldass [O,m,n],
whence:

R = halMeN=7) + 7] + M6 <0 (3.10)

the equality holds & M=m,N=n, H is of type (m,n)

A = [alMeN=7) + 7]2= 4 Vo> 0 (3.11)

A = ¢ =>N=m,Non, # Ls of type (m,n), h=[2lm+n-7)+11/2
By (3.11), (3.10) it follows that:

Vo = T St2,k,v) sets of class [1,2,3] don't exist, if 4v >k(32+2),
In pardicudan in S(2,q11,q*+q+ 1) and in S$(2,q,q* ) sets of class [17,2,3)

don' U exist if ¢ >5.

4. INTERSECTION SETS AND BLOCKING SETS IN S(2,k,v)

An intersection sel of S(2,k,v) is a set H meeting every line in

at lecast one point, that is such that t, = 0. It is:
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;Ir‘/lza,
H intensection set => )H/I = <> H is of type (1,kR) <= (4.1)

<> #H i4 a prime

A blocking set in S(2,k,v) 1is an intersection set not containing

lines, that is such that t, = = 0. Obviously, i B is a Odocking

t
k
set, also S - B it is. It follows that (see (4.1)):

B blocking set => 2 <|B|<v - 2 (4.2)

Our aim is to improve (4.2). Let be n = max |¢NB| and s a n-se-

LEL
cant line to B. Let be Pes - B. Each of the r-1 lines through P, dif-
ferent from s, meets B in at least one point, whence [B|>r - 1 + n.

Set:
h =18l =2 ~-17+a a> = max |2NB| (4.3)
LEL

If in (3.10) we set M =1, N=a, h=[B] =r -1+ a, we get:

(n-1+a)? - (n-1+allra+1) + ab <0 (4.4)

=0 «<>a=n, Bisof type (1,n)

Since v = r(k-1) + 1, b = vr/k, by (4.4) we get:

krt/l =k )?* +lk( k=1 )2
2k (4.5)

ka?-al 3k-n)-kR(2-2) >0<=>a >a =1 +

a=0a <>a=a=mn, Bisof type (1,n).

By (4.3), (4.5) and since the complement of a blocking set is a block-



