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Preface

This book originated from the need for a suitable student text for the course 4n
Introduction to Modern Physics first introduced by the authors at the Faculty of
Agricultural, Food and Environmental Quality Sciences of the Hebrew University of
Jerusalem. The primary goal of this course is to produce graduates who, whatever their
field of specialisation, are ‘modern physics literate’. It is open to all students who have
successfully completed their first-ycar physics and mathematics studies.

The course sets out to reccunt, in terms amenable to non-physics majors, the
development of the three semninal ideas—Special and General Relativity, Quantum
Theory and the Nuclear Atom-—out of which modern physics grew in the first half of
the 20th century. These topics constitute the principle subject-matter of this book.

However, in addition to a final examination on these subjects, the students
participating in the course are also required to submit a term-paper on any topic of
their choice, providing it falls within the scope of modern physics or involves one or
other of the industrial, technical or research applications derived from it. Accordingly,
the scope of the book was widened beyond the narrow limits of the course material and
chapters or sections devoted to such topics were added. Among those given a more
detailed treatment are:

* Magnetism as a Relativistic Effect;

* The Interaction of Radiation with Matter—Spectroscopy;

* Fluorescence in Biological Systems and Membrane Research;

* Nuclear Structure and Elementary Particles—the Standard Model;

* The Design of Nuclear Weapons: fission and fusion weapons;

* Nuclear Reactors: the events at Chernobyl are described in detail;

* The Design and Use of Lasers;

* The Mossbauer Effect;

* Nuclear Magnetic Resonance and Magnetic Resonance Imaging;

* The Conduction of Electricity in Solids and Semiconductor Devices;
In each case, the underlying theory is presented together with a general description of
the practical aspects of the application. For the sake of completeness we have also
added:

* Quantum Electrodynamics—QED;

* Invariance, Symmetry and Conservation Laws.

In general, the presentation of the material emphasises the physical aspects of the
phenomena. Problem solving is not a major or primary objective. Thus, the text
presumes upon the spirit of the physical method recommended by J.J. Thomson:*

Sir Joseph J. Thomson 1856-1940, English physicist who was awarded the Nobel prize in
1906 for his research on the conduction of electricity through gases at low pressures.



vi Preface

The physical method has all the advantages in vividness which arise from the
use of concrete quantities instead of abstract symbols ... we shall be acting in
accordance with Bacon's dictum that the best results are obtained when a
research begins with Physics and ends with Mathematics ...

The use of a physical theory will help to correct the tendency - which I think all
will admit is by no means uncommon - to look on analytical processes as the
modern equivalent of the Philosopher’s Machine in the Grand Academy of
Lagado, and to regard as the normal process of investigation in this subject the
manipulation of a large number of symbols in the hope that every now and then
some valuable result may happen to drop out.

The impression that this is what doing physics is all about lies at the heart of the
antipathy exhibited by so many students towards the subject. This text secks to avoid
this.

Notwithstanding, this is not a popular science book; it does not avoid the 'hard
bits’. Studying physics requires a mental effort and there is no reason to hide this fact.
Mathematics is incorporated into the main body of the text, but only to the extent
required for descriptive or illustrative purposes. Most of the mathematical proofs have
been separated from the main body of the text so as not to interrupt its flow; they
appear in the worked examples and appendices and can be skipped at a first-reading.
Questions, exercises and problems for student assignments will be found at the end of
each part of the book; answers to these are to be found at the end of the book.

The techniques by which trigonometric functions, phasors (rotating vectors) and
complex numbers are used in the mathematical description of wave motion are
demonstrated in a supplementary section. A comprehensive index is also included.

In addition to its suitability as a student text for courses similar to that for which it
was originally written, we would also recommend this book as a first reader and source
text for students majoring in the physical sciences and engineering.

The authors acknowledge their deep indebtedness to the many excellent standard
reference works to which they had recourse during the writing of this book. They also
wish to thank Dr. German Kilberman who read and commented on parts of the text
and Daniel Pfeffer who prepared the computer simulations and provided the technical
advice without which this camera-ready manuscript could never have been completed.

Jeremy 1. Pfeffer
Shlomo Nir

Rehovot 2000

T Notes on Recent Researches in Electricity and Magnetism, J.J.Thomson, Oxford at the
Clarendon Press (1893).
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Part One The Birth of a New Physics

Classical physics has its origins in the 17th century, with Galileo's! experiments on
falling bodies, Kepler's? calculations of the planetary orbits and Newton's? postulates
and mathematical laws of motion. During the following two centuries, the Newtonian
system of mechanics, together with its theory of gravitation, dominated scientific
thinking; its achievements were unprecedented. Perhaps its most impressive feat was
predicting the existence of the planet Neptune. Calculations based on Newtonian
mechanics indicated that the slight perturbations that had been observed in the orbit of
the planet Uranus could be accounted for by the presence of an additional planet in the
solar system, one previously unknown. In 1846, this new planet, Neptune, was found at
the exact position in space indicated by the calculations.*

By the middle of the 19th century, the ancient mystery of the nature of heat had
been solved by the kinetic theory of matter and the science of thermodynamics. The
latter had also provided an understanding for the ‘arrow of time’ inherent in the
workings of Nature.

Classical physics reached its zenith in the second half of the 19th century with the
publication of Maxwell's’ theory of electromagnetism and the discovery of the
electromagnetic waves whose existence it had predicted. This theory summarised and
unified everything that was known at the time about electrical and magnetic
phenomena and provided the first comprehensive conceptual basis for the science of
optics.

However, towards the end of the 19th century, it became clear that there were
important physical phenomena for which classical physics had no satisfactory
explanation. The electron, X-rays and radioactivity, all of which were discovered
within a few years of each other in the last decade of the century, were beyond the
competence of classical physics to explain. Moreover, there were even instances where
the hypotheses and laws of classical physics were found to be totally incompatible with
the results of experiments in more conventional fields, such as studies of the speed of
light relative to different observers and the emission and absorption of heat radiation. It
became apparent that despite its great achievements, some of the most fundamental

' Galileo Galilei 1564-1642, the Italian physicist and astronomer who first asserted that “the
book of nature is written in the language of mathematics”.

2 Johannes Kepler 1571-1630, German astronomer.
Sir Isaac Newton 1642-1727, English mathematician, astronomer and physicist.
In a similar technique that is currently being used in the search for planetary systems other
than the solar system, the ‘wobbling” observed in the motion of certain stars is attributed to
the presence of large but as yet unseen orbiting bodies (planets).

3 James Clerk Maxwell 1831-1879, Scottish mathematician and physicist.
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principles underlying classical physics were incorrect. Clearly, fresh ideas and theories
were needed.
At the beginning of the 20th century, three new hypotheses were put forward that
changed the face of physics. They were:
1. The theory of relativity;
2. Quantum theory;
3. The nuclear model of the atom.

This triad laid the foundations of modern physics. They and the effects derived from
them are the subject of this book.

The new theories of modern physics not only resolved the problems left
unanswered by classical physics but extended the reach of the physical sciences into
previously unknown fields. In general, the familiar and well established laws of
classical physics remain valid for dealing with phenomena that occur on a ‘normal’
scale, in the human sense of the term. However, when dealing with phengs,,
occurring on the cosmic scale on the one hand, and on the atomic scale on ths, other,
only the more comprehensive laws of modern physics can be employed. .

Our study of 20th century physics opens with the discovery of the electro’ = (he first
elementary particle to be identified. This is followed by a short review of t‘ .+ classical
theory of electromagnetic waves. These two topics provide the basls for the
comprehensive examination of the theory of special relativity that follows. Part One of
this book concludes with a brief survey of the theory of general relativity.



Chapter 1.1
The Electron

When first investigated in the 18th and 19th centuries, electrical and magnetic
phenomena were generally construed in terms of ethereal fluids, as were those
associated with heat and light. These fluids were thought to comprise minute mutually
repelling particles. Thus, heat was either thought to be vibrations in the fluid caloric or
an accumulation of this fluid in the interstices of materials. Light was either a flux of
particles emitted at high speed from luminous bodies or the vibrations of a ubiquitous
Tuid @ther. Electric fluids—electricity—flowed readily through metals and other

"tors but did not penetrate insulators such as paper and glass. Opinion was
divideu as to whether there was just one electric fluid or two—a positive fluid and a
negativ- fluid.

The Hssibility that electricity might not be a continuous fluid was first raised in
the midc - of the 19th century following Faraday’s® quantitative researches on
electrolysis. These showed the existence of a systematic relationship between the
amount of electricity passed through an electrolytic cell and the quantity of material
that undergoes chemical reaction (electrolysis) in the cell. Thus, the passage of a
certain amount of electricity—96,500 coulombs in modern terms—always liberates a
gram-equivalent of substance from the electrolyte, whether it is the metal released at
the negative cathode or the non-metal at the positive anode. Putting aside his
misgivings about atomism, Faraday recognised that this suggested electricity might be
atomic in nature and that a natural indivisible unit of electricity exists. In 1891 Stoney’
suggested that this natural unit of electricity be called an electron.

On this view, every ion carries an integer multiple of this natural unit. For
example, a silver ion, Ag*, carries a single natural unit of positive charge; a typical
copper ion, Cu**, carries two such units. Given that a gram-equivalent of monovalent
ions comprises a mole, the magnitude of the natural unit of electricity, e, can be
calculated by dividing the 96,500 coulombs by Avogadro’s number, 6.02-1023:

96,500

=209 __6.1010¢ a.n
6.02-10%

The term electron is now used to designate the elementary particle that carries the
natural unit of negative charge which was first identified towards the end of the 19th
century in experiments on the conduction of electricity through gases at very low
pressures. At atmospheric pressure, gases do not usually conduct electricity. However,
at reduced pressures of 0.5SmmHg to 10mmHg and with applied potentials of several
6 Michael Faraday 1791-1867, English chemist and physicist.

7 George Stoney 1826-1911, Irish physicist.
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thousand volts, they can be made to pass a current. These greatly reduced gas pressures
were first achieved at the end of the 19th century following the advances made at that
time in vacuum pump technology. The gases were contained in narrow glass tubes,
called discharge tubes, into which suitable electrodes had been inserted. The passage
of the current is accompanied by the appearance of striking colours in the tubes (Fig
1.1).

v
0.5 mm Hg

Fig 1.1 The conduction of electricity through air at low pressures in a discharge tube.
The colours result from the excitation and ionisation of the atoms of the gas in the
discharge tube. The bands and the coloured and dark regions arise from the variations
in the electric field strength throughout the tube.

At still lower pressures, ~0.02mmHg, the colours disappear but the glass tube itself
begins to glow with a green hue. An object placed in front of the cathode (the negative
electrode) casts a shadow on the opposite wall of the discharge tube (Fig 1.2). Certain
minerals, when placed in front of the cathode, fluoresce with brilliant colours. It
appears that something is being emitted from the cathode; this emanation was given
the name cathode rays.

Fig 1.2 The shadow cast by an
object in the path of the rays in a
cathode ray tube. 0.02 mm Hg

In further experiments it was found that the cathode rays were deflected by a
magnetic field as would a stream of negative charge (Fig 1.3a). Furthermore, a small
paddle wheel positioned between the electrodes rotated under their impact; switching
the polarity of the electrodes reversed the direction of the rotation (Fig 1.3b). These
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two phenomena suggested the cathode rays might be negatively charged particles.
Nevertheless, many physicists at the time still considered them to be of an &thereal
rather than a material nature.

Fluorescent Screen

Fig 1.3a The deflection of cathode
rays in a magnetic field. The
direction of the deflection shows
that it is negative charge that flows
with the cathode rays.

Fig 1.3b The paddle wheel rotates
under the impact of the cathode
rays.

Convinced that the cathode rays were in fact charged particles of matter,
J.J.Thomson set out in 1897 to measure their velocity, v, and the ratio, % between

their charge, g, and their mass, m. In one of the experiments he conducted, a narrow
collimated beam of cathode rays was aimed along the length of a very low pressure
glass discharge tube. After emerging from the hole in the anode, the beam passed
through a thin slit, between a pair of vertical coils and, finally, between the horizontal
parallel plates of a condenser. The green spot that appeared on the glass at the far end
of the tube indicated where the beam impinged upon it (Fig 1.4).

Fig 1.4 The type of very low pressure discharge tube used by Thomson for the
determination of the ratio between the charge and the mass of the particles (electrons)
in cathode rays. A collimated beam was produced by the arrangement of the cathode,
C, the pierced anode, A, and the slit, S. The circle M represents the pair of coils, one
on each side of the tube. Passing a current through these coils produces a uniform
horizontal magnetic field in the gap between them. X and X' are the parallel plates of
the condenser. Connecting the plates to a source of a potential produces a uniform
vertical electric field between them. An undeflected particle beam strikes the point P.



