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Preface

The study of classical mechanics offers an unequaled opportunity for
physical insights into events of everyday life. For this reason it is
desirable that a textbook for an intermediate-level course in mechanics
be suitable for use both by physics majors and by students from other
disciplines. This textbook attempts to meet this basic goal by pre-
sentation of topics of widespread popular interest. By repeated
application of the principles of mechanics to such diverse topics as
sports, seagulls, boomerangs, satellites, and tides, we try to develop
physical intuition as well as proficiency with mathematical methods.

This text was designed for an intensive one-semester course in
theoretical mechanics at the junior-senior level. A knowledge of
general physics, integral calculus, and differential equations is

ix



X PREFACE

assumed. The problems at the end of each chapter are designed to
illustrate the methods developed in the text and to further stimulate
the student’s interest in mechanics. Since a mastery of problem-
solving techniques is an essential requirement for a mechanics course,
we have included a number of easy problems to permit the student
to get a wide range of practice.

A major departure in our book from the conventional approach to
the subject is the introduction of the Lagrange formulation of the
equations of motion at an early stage (end of Chapter 2). In the
conventional organization, Lagrange’s equations are presented near
the end of a one-semester course, and the student rarely develops a
reasonable familiarity with lagrangian methods. Since our organiza-
tion encourages the student to solve problems in later chapters by
direct application of Newton’s laws and Lagrange’s equations, he
can achieve a mastery of both techniques.

In our experience, about 85 percent of this text can be covered in
a 15-week semester with three lecture hours per week. A majority
of our students also attended an optional session each week for
discussion of solutions to assigned homework problems. In the choice
of material for lectures, any of the following sections can be selectively
omitted without loss of continuity in the text: 2-9, 2-10, 2-12, 4-3, 4-6.
5-11, 6-4, 6-11, 6-12, 6-13. The last three sections of Chapter 7 can
be covered or omitted, as time permits. Since the number of different
topics in mechanics which can be discussed in the course of a semester
is necessarily limited, we do not include chapters on strength of
materials, continuous media, or relativity.

The first chapter contains novel one-dimensional applications in-
volving frictional, gravitational, and harmonic forces in the sports
of drag racing, sky diving, and archery. The simple harmonic oscilla-
tor with damping and driving forces is given appropriate attention.
Chapters 2, 3, and 4 are organized around the fundamental con-
servation laws of energy, momentum, and angular momentum. As
an application of energy conservation in Chapter 2, we calculate the
minimum velocity needed to escape the earth’s gravitational attrac-
tion. In Chapter 3 the Apollo moon rocket is used as a concrete
example in a section dealing with variable mass. Collisions of billiard
balls are discussed in center-of-mass and laboratory coordinate sys-
tems to develop familiarity with momentum-conservation methods.
The concept of a differential cross section is introduced in a calcula-
tion of the likelihood that BBs ricochet off a cylindrical pipe in a
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given direction. In Chapter 4 the trajectories for planetary motion
are derived by two alternative methods. The orbit period for a
proposed NASA weather satellite is determined from Kepler’s law.
The forthcoming Grand Tours of our solar system on gravity-
assistance trajectories are discussed as examples of the central-force
problem. The differential cross section for Rutherford scattering is
derived in the concluding section of Chapter 4.

In the treatment of rigid-body motion in Chapter 5, the return of
a boomerang is explained in terms of the gyroscope effect. * Draw ”’
and ““follow” shots in billiards and the action of ‘‘ superballs”’ are
presented as intriguing examples of rigid-body rotations. Chapter 6
is concerned with applications of the law of motion in moving
coordinate systems. The relevance of the centrifugal and Coriolis
forces in a variety of physical situations is indicated. Several sections
are devoted to the motion of spinning tops, concluding with an
analysis of the flipping motion of the amazing tippie-top.

Chapter 7 begins with a proof that the net gravitational attraction
of a point mass on a spherically symmetrical body acts as though the
mass of the body were concentrated at its center. We then proceed
to calculate the tides on earth due to the moon and sun. As a useful
application of lagrangian methods in gravitation, we discuss the
technique for automatic attitude stabilization of a satellite orbiting
the earth. In somewhat more advanced sections of Chapter 7, we
calculate the gravity field and shape of the oblate earth.

It is a pleasure to acknowledge helpful conversations with numer-
ous colleagues and friends. Suggestions by Professors L. Durand, III,
C. Goebel, and R. March were of particular value in the develop-
ment and refinement of the text. A critical and thorough review of
the manuscript by Professor C. Goebel, for which we are especially
grateful, led to substantial improvements in various sections. We
benefited by the able assistance of Mr. Kevin Geer as teaching
assistant in charge of problem-solving sessions. Many thanks go to
Mrs. Laurel Hermanson for typing the several drafts of the manu-
script. One of us (V.B.) is grateful for the kind hospitality extended
by Professor San Fu Tuan and other members of the Physics Depart-
ment at the University of Hawaii, where part of the manuscript
was prepared.

V. Barger
M. Olsson
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CHAPTER 1

The Beginnings

Classical mechanics is one of the most satisfying subjects of study
in all of science. In order to understand and appreciate how both
everyday and esoteric things in our world work, some knowledge of
the principles of mechanics is essential. In this age everyman needs
to know mechanics to fulfill and enrich his daily existence.

The formulation of classical mechanics represents a giant milestone
in man’s intellectual and technological history, as the first mathe-
matical abstraction of physical theory from empirical observation.
This crowning achievement is rightly accorded to Isaac Newton
(1642-1720), who modestly acknowledged that if he had seen
further than others, ““it is by standing upon the shoulders of Giants.”
However, the great Laplace characterized Newton’s work as the

1



2 CLASSICAL MECHANICS

supreme exhibition of individual intellectual effort in the history of
the human race.

Newton translated his interpretation of various physical obser-
vations into a compact mathematical theory. Three centuries of
experience indicate that all mechanical behavior in the everyday
domain can be understood from Newton’s theory. His simple
hypotheses are now elevated to the exalted status of laws, and these
are our point of embarkation into the subject.

1-1 NEWTONIAN THEORY

The newtonian theory of mechanics is customarily stated in three
laws. Accordingto the first law, a particle continuesinuniform motion
unless a force acts on it. The first law is a fundamental observation
that physics is simpler when viewed from a certain kind of co-
ordinate system, called an inertial frame. One cannot define an
inertial frame except by saying that it is a frame in which Newton’s
laws hold. However, once one finds (or imagines) one such frame, all
other inertial frames are moving in straight lines at constant velocity
(i.e., nonaccelerating) with respect to it. A coordinate system fixed
on the surface of the earth is not an inertial frame because of the
accelerations due to the rotation of the earth, and its motion around
the sun. Nevertheless, for many purposes it is an adequate approxi-
mation to regard a coordinate frame fixed on the earth’s surface as
an inertial frame. Indeed, Newton himself discovered nature’s true
laws while riding on the earth!

The meat of Newton’s theory is contained in the second law, which
states that the time rate of change of momentum of a particle is equal
to the force acting on the particle,

dp

F:E (1-1)

where the momentum p is given by the product of (mass) x (velocity)
for the particle.
p=nmv (1-2)

The second law provides a definition of force. The physics content of
the second law depends on empirical forms for the forces as functions
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of positions and velocities. The force in Eq. (1-1) can be a function of
x, v, and ¢, and so
dp d’x
F(X’U’t):E:mc_it_z
is a differential equation. While Newton’s laws promise to apply to
any situation in which one can specify the force at all times, very few
interesting physical problems lead to force laws amenable to simple
mathematical solution. To approximate the true force law by a
sufficiently accurate approximate form is one of the arts that will be
taught in this book. However, in this modern age of digital com-
puters, one can handle incredibly complicated force laws by the
brute-force method of numerical integration.

In the special case F = 0, integration of Eq. (1-1) gives p = constant
in accordance with the first law. A more familiar expression of the
second law in Eq. (1-1) is

F=ma (1-3)

where a = dv/dt is the acceleration.

The third law states that if particle A experiences a force due to
particle B, then B feels simultaneously a force of equal magnitude
but in the opposite direction. This law is extremely useful, especially
in the treatment of rigid-body motion, but its range of applicability
is not as universal as the first two laws. The third law breaks down
when the interaction between the particles is electromagnetic.

It is a remarkable fact that macroscopic phenomena can be ex-
plained by such a simple set of mathematical laws. As we shall see,
the mathematical solutions to some problems can be complex;
nevertheless, the physical basis is just Eq. (1-1). Of course, there is
still a great deal of physics to put into Eq. (1-1), namely, the laws of
force for specific kinds of interactions.

1-2 INTERACTIONS

The gravitational and electromagnetic forces determine our whole
condition of life. Newton deduced the following force law for gravi-
tation by studying data phenomenologically fitted by Kepler on the
motion of planets and satellites in our solar system.
GM M,
F=— (1-4)

r2




4 CLASSICAL MECHANICS

The force between masses M, and M, is proportional to the masses
and inversely proportional to the square of the distance between
them. The negative sign in Eq. (1-4) denotes an attractive force
between the masses. Newton proposed that this gravitational law
was universal, the same force applying on the earth as between
celestial bodies. The universality of the gravitational law can be
verified, and the proportionality constant G determined, by delicate
experimental measurements of the force between masses in the
laboratory. The value of G is

G =6.67 x 10~"'m?/(kg)(s?) (1-5)

The dominant gravitational force on an object located on the surface
of the earth is due to the attraction from the earth. The gravitational
attraction on a point mass from a spherically symmetric body acts as
if all the mass of the body were concentrated at its center, as Newton
rigorously proved from his invention of calculus. We will give a proof
of this assertion in Chap. 7. For an object of mass m on the surface
of the earth, the force law of Eq. (1-4) becomes

M.G

F=—m R.2

=—myg (1-6)

where g is the gravitational acceleration,
g =9.8m/s?
The values of mass and radius of the earth in Eq. (1-6) are

R.=6,371 km
M. =597 x 10%* kg

Since the earth’s radius is large, the gravitational force on an object
anywhere between the surface of the earth and the top of the atmo-
sphere (~200 km up) is given with reasonable accuracy by Eq. (1-6).
Consequently, in many applications on earth, we can neglect the
variation of the gravitational force with position.

The static Coulomb force between two charges e; and e, is
similar in form to the gravitational-force law of Eq. (1-4).

€162

F=— (1-7)

This force is attractive if the charges are opposite in sign and repulsive
if the charges are of the same sign.
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Another force with a wide range of application is the spring force
or Hooke’s law, which is expressed as

F=—kx (1-8)

Here k is a spring constant which is dependent on the properties of
the spring and x is the extension of the spring from its relaxed
position. This particular force law is a very good approximation in
many physical situations, such as the stretching or bending of
materials which are initially in equilibrium.

Frictional forces play a crucial role in damping or retarding motion
initiated by other forces. The static frictional force between two solid
surfaces is

[ fl <psN 1-9)

The force f acts to prevent sliding motion. N is the perpendicular
force (normal force) holding the surfaces together, and pu, is a
material-dependent coefficient. Equation (1-9) is an approximate
formula for frictional forces which has been deduced from empirical
observations. The frictional force which retards the motion of sliding
objects is given by
f: ,lLkN

It is observed that this force is nearly independent of the velocity of
the motion, for velocities which are neither too small or too large.
For a given set of surfaces, the coefficient of kinetic friction g is
less than the coefficient of static friction p;.

Frictional laws to describe the motion of a solid through a fluid
or a gas are often complicated by such effects as turbulence. How-
ever, for sufficiently small velocities, the approximate form

f=—bv (1-10)

where b is a constant, holds. At higher, but still subsonic velocities,
the frictional-force law

f=—cv? (1-11)
is approximately true. The drag force on a propeller airplane is
remarkably well represented by a constant times the square of the
velocity.

Externally imposed forces can take on a variety of forms. Of those
depending explicitly on time, sinusoidal oscillating applied forces
like

F = F, cos wt (1-12)
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are frequently encountered in physical situations.
In a general case the forces can be position-, velocity-, and time-
dependent.

F=F(x,v,t) (1-13)

Among the most interesting and easily solved examples are those in
which the forces depend on only one of the above three variables, as
illustrated by the examples in the following three sections.

1-3 THE DRAG RACER: FRICTIONAL FORCE

A number of interesting engineering-type problems can be solved
from straightforward application of Newton’s laws. As an illustra-
tion, suppose we want to design a drag racer which will achieve
maximum possible acceleration when starting from rest. We assume
that the engine of the racer can apply an arbitrary torque to the rear
wheels, and our problem is to determine the optimal weight dis-
tribution of the racer. The external forces on the racer which must
be taken into account are (1) gravity, (2) the normal forces supporting
the racer at the wheels, and (3) the frictional forces which oppose the
rotation of the powered rear wheels. A sketch indicating the various
external forces is given in Fig. 1-1. The gravity force Mg acts as if all
the weight were concentrated at the center of mass. This is a familiar

L by
FIGURE 1-1 Forcesacting on a dragracer.




