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Preface

The biopharmaceutical industry is facing tremendous and fascinating opportunities
to improve its overall research and development and business efficiency by integrat-
ing various technologies and informational systems and by creating an intelligent
interface between different systems and business segments. Currently there is no
reference that has (a) looked into all of the different aspects of technology integration
and information flow in the biopharmaceutical enterprise and (b) outlined the spe-
cifics and commonalities of technologies at different stages of development. An
important and challenging aspect of this book is the in-depth analysis of emerging
trends and future opportunities in integration and interfacing while maintaining a
systematic or programmatic approach. This book comprises well-referenced updated
chapters from leaders in the pharmaceutical industry, in academia, and in information
technology. Each chapter reviews a particular area.

This book is intended for a heterogeneous audience, essentially anyone who
seeks a greater understanding of the concepts and utilization of informatics. At the
same time, sufficient detail and updated references are included so that scientists in
any discipline, managers, and investors can benefit by better understanding these
emerging trends and their applications.
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INTRODUCTION

Progress in science depends on the elucidation of new concepts as well as the
development of better tools for carrying out scientific research. The tools for scien-
tific research have traditionally included instruments for measurement and experi-
mentation. The advent of computers has provided a powerful mechanism for use in
scientific research. All applications of computers in science require the development
of software. Software applications vary greatly from informatics to database man-
agement to intelligent automation. There even exists a multitude of examples that
have merged automation and informatics to form what is known as functional
informatics [1, 2]. No matter what the application, computers have become a great
asset in expanding our scientific knowledge. Of particular note are the great strides
in software advances in automation, specifically in laboratory automation. With the
use of intelligent software, output can be obtained with little or no user intervention
or data analysis. Processes that were previously bottlenecks have evolved to provide
a wealth of data and useful information with the adaptation of intelligent automation.
In this chapter we will visit reaction optimization and see how the expansion of its
adaptation into the biological sciences can expedite data collection and analysis.
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LABORATORY AUTOMATION

Over the past several decades there have been major developments in laboratory
automation stemming from the emergence of systems capable of processing large
numbers of samples in parallel [3—7]. Laboratory automation can range from simple
automation, such as automated analysis instruments (i.e., Cell Lab Quanta® by
Beckman Coulter, Inc.), to more-complex integrated systems, such as intelligent
laboratory workstations (i.e., Biomek® 2000 Laboratory Automation Workstation by
Beckman Coulter, Inc.).

The range of laboratory automation can be broken into two levels of user input:
open-loop and closed-loop experimentation. In open-loop experimentation, an exper-
iment or analysis is set up and run with no decisions made based on data from
previous or ongoing experiments. More often than not, the experiment or analysis
was only meant for serial evaluation, and decisions are not necessary. This allows
for easy use of the instrument by scientists, but it restricts the utility of the instrument
because few, if any, adaptive changes can be made to the experimentation. In contrast,
in closed-loop experimentation, ongoing experiments are evaluated, and future
experiments are pruned, altered, or spawned based on data from previous or ongoing
experiments [8]. Current integrated systems are moving in the direction of closed-
loop experimentation, which is flexible and configurable and would allow the auto-
mated system to be a walk-away device. In return, this approach offers the prospect
of increased productivity while reducing scientist intervention.

One of the more beneficial aspects of integrated systems stems from powerful
software that allows scheduling of experimentation. Multiple sets of experiments can
be implemented in parallel through the use of a scheduler. A simple scheduler offsets
the start time of intact experimental plans and interleaves (in a comblike manner)
the individual commands of the respective plans. The resulting schedule consists of
a set of experimental plans with offset start times; in this manner the total duration
of the set of parallel experimental plans is generally compressed by up to tenfold
compared with that for serial implementation [9]. More-complex schedulers exist
that can order the experiments in a particular fashion, such as by user ranking or by
shortest experiment duration first.

Automated experimentation instruments, created from the combination of com-
puters with robotics, have been assembled for diverse applications ranging from
high-throughput screening to library preparation to reaction optimization. Because
there is a push toward more-intelligent automation, our efforts will concentrate on
reaction optimization, which provides the most desirable benefits of intelligent
design.

REACTION OPTIMIZATION

Diverse automation systems, ranging from batch reactors to multireactor worksta-
tions, have been constructed with the dominant application of performing reaction
optimization. Reaction optimization, an unglamorous but integral component of
scientific research, is essential for achieving high-yield products and for developing
cost-effective and environmentally benign processes [10]. By definition, optimization
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implies the ability to perform experiments, to evaluate data, and to perform modified
experiments in an effort to achieve improved results. Box and coworkers [11] were
among the pioneers in reaction optimization. Their studies of evolutionary operation
in industrial settings were developed over a half a century ago and still hold true
today.

There is a large set of evolutionary approaches to perform reaction optimizations.
The approaches can be broken into four algorithm categories: (a) parallel, (b) adap-
tive, (c) parallel adaptive, and (d) integrated. In the following sections, each type of
optimization algorithm is described along with some examples of each type.

PARALLEL ALGORITHMS

One of the simplest conceptual approaches for reaction optimization, open-loop
experimentation, involves the examination of all combinations of factors that affect
a given reaction (i.e., a full factorial design). In the case of a search space defined
by two factors, all points in a regular two-dimensional grid are examined. The
resulting data can then be plotted to give a response surface. Response surfaces for
reactions are very valuable to scientists, but generally are not widely available due
to the extensive manual labor required to investigate a large number of experiments.
One approach to minimize the extent of manual experimentation has been to employ
partial factorial designs, which examine only part of the space and then employ
statistical approaches to tease out interactions among factors. The methodology of
statistically designed experiments is well developed, but it has made limited inroads
among scientists.

Automated workstations provide the means to perform a vast number of exper-
iments with minimal scientist intervention, which reduces the laborious task of
performing tedious experiments and eliminates the need for statistical treatment.
Thus, grid searches (factorial designs) can be a viable option for optimization. The
fact that grid searches are performed with no decision-making features means that,
upon completion of all experiments, the automation software can only decide
whether and where an optimum value exists [12]. As previously mentioned, the
duration of the experimentation is reduced dramatically by performing the experi-
ments in parallel. What would have taken an exorbitant amount of time to obtain
scientific data can be reduced to a manageable duration.

ADAPTIVE ALGORITHMS

Adaptive algorithms are the foundation of closed-loop experimentation. Algorithms
that can make scientist-independent decisions have made great strides toward intel-
ligent automation. One of the most commonly used adaptive algorithms is the simplex
algorithm [13], which is a well-known method for hill-climbing optimization. Many
modifications to the original simplex algorithm have been developed. Betteridge et
al. [14] have devised a robust method, called the composite modified simplex (CMS),
that combines the best features of various modified simplex methods [15].

A simplex is an n-dimensional polygon with (n + 1) vertices, where n is the
number of control variables for optimization and each vertex has n coordinates. The
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simplex is triangular in two-dimensional space, tetrahedral in three-dimensional
space, and so forth. The optimization begins with a set of initial experiments whose
number is equal to the number of control variables plus 1 (n + 1). According to the
experimental results, the subsequent vertex is projected in a direction opposite from
the worst vertex (Figure 1.1). The new simplex consists of one new point and n
points from the previous simplex (i.e., discarding the worst point and replacing it with
a new point). Consequently, despite the degree of the dimensional space, only a single

3
Initial
simplex
2
Get responses, then
rank vertices
A O .
Reflect away from
the worst vertex
3
New 1 ,\" 4
simplex i
2

FIGURE 1.1 CMS movement. The basic simplex (i.e., CMS) moves in a two-dimensional
search space. In an n-dimensional space, the simplex algorithm discards the one worst point
in each simplex, maintains n points, and projects one new vertex with each move. The simplex
algorithm requires serial implementation. (B: best response point; N: next best point; W: worst
response point.)
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experiment is proposed aside from the (rn + 1) points in the initial cycle. Repetitive
measurements of the response and the reflection of simplices form the basis for the
most elementary simplex algorithm. The CMS optimization is attractive because the
calculations are straightforward, the search space is expandable to encompass mul-
tiple dimensions, and the method is robust in the presence of experimental noise [9].

PARALLEL ADAPTIVE ALGORITHMS

A fusion of parallel and adaptive algorithms is the culmination of efforts to create
closed-loop experimentation. Parallel adaptive algorithms allow for wide searching
of search spaces with convergent properties. A straightforward example of a parallel
adaptive algorithm is a grid search that has evolutive properties to converge on an
optimum response. A regular grid of points is examined in one cycle; then a second,
more focused, grid is situated around the region of optimal response. A third even
more tightly focused grid is then examined around the region of optimal response
observed in the preceding cycle (Figure 1.2). In this manner, the entire search space
is examined, the region of optimal response is identified, and an increasingly fine-
grained search is implemented in the region of optimal response. This algorithm for
experimentation affords both a coarse-grained response surface for the entire search
space and a fine-grained evaluation in the region of greatest interest without requiring
the entire search space to be examined with the same fine graining [16].

Another useful parallel adaptive algorithm is the multidirectional search (MDS)
method. The MDS algorithm was created by Torczon to overcome the serial nature

FIGURE 1.2 Successively focused grid searches. The first grid is cast broadly (O). The
second grid (+) is centered around the point from the first grid that gave the highest point. A
third grid ([J) and fourth grid (*) are projected in a similar fashion. In this manner, the entire
surface is examined in a coarse-grained fashion, and the optimal region is examined in a fine-
grained fashion.
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of the simplex method [17-20]. Torczon’s work stemmed from considering how best
to take advantage of multiple parallel processors in the computational evaluation of
unconstrained optimization problems. The resulting MDS algorithm is also simplex-
based, but differs in a fundamental way from the traditional simplex method. As
previously stated, in a simplex algorithm, each move occurs by reflection away from
the one worst point, creating a new simplex that contains one new point, regardless
of search-space dimension. In each move, the one worst point is discarded, and the
one new point of the new simplex is evaluated. In contrast, in the MDS method,
each move occurs by reflection away from all but the one best point (Figure 1.3).
The new simplex in n-dimensional space is composed of n new points and only the
single best point from the previous simplex.

The MDS algorithm has a further distinction from that of a simplex movement.
In addition to those points that are required to iterate simplex projections through
the space (mandatory points), exploratory points can be evaluated in each cycle of
MDS to the extent that resources are available to do so. The exploratory points are
identified by the look-ahead projection of possible future simplexes. Examples of
the range of exploratory points that can be examined for the initial cycle are shown
in Figure 1.4. The number of experiments implemented per cycle depends on the
dimension of the search space and the batch capacity of the workstation (which
limits the number of exploratory experiments). Only one search space is investigated
in a given course of experiments. The MDS method provides a means of evolutionary
optimization via parallel experimentation. Thus, a simplex search projects only one
new point per cycle, whereas MDS projects at least n new points per cycle [21].

Another approach to increase parallelism with simplex methods is to project
multiple simplexes on a single search space. The simplex searches are independent
in the direction of their movement but march in lockstep. A set of experiments of
number equal to m X (n + 1) is generated as the initial trial, and m experiments are
proposed for the subsequent cycle, where m is the number of independent simplex
searches and n is the dimension of the search space. In a given search, the number
of simplexes can be chosen by the user; the number generally can be determined
by a set pattern to achieve an even distribution of initial simplexes, and the number
increases with search-space dimension (Figure 1.5) [22, 23]. One of the greatest
advantages of this method is that it minimizes an inherent flaw of simplex searches.
With one simplex, convergence is possible on a local maximum/minimum. However,
multiple simplexes have a much higher probability of converging on the global
maximum/minimum because of the sheer number of converging simplexes.

INTEGRATED ALGORITHMS

Integrated algorithms combine the screening capabilities of parallel algorithms with
the convergence properties of adaptive algorithms, but they do so in a unique way
compared with parallel adaptive algorithms. There are many methods for integrating
the different optimization algorithms. One particular example of interest is a tech-
nique that uses a two-tiered approach. The first tier employs a broad search to mark
promising areas (breadth-first search). The second tier employs in-depth searches
according to the results of the first-tier survey [24]. Figure 1.6 illustrates this
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FIGURE 1.3 Basic MDS movement in a two-dimensional search space. In an n-dimensional
space, the MDS algorithm discards n points in each simplex (all but the best), maintains the
one best point, and projects n new vertices with each move. The MDS algorithm is amenable
to parallel implementation. (B, N, and W are as defined in Figure 1.1.)

approach. This technique has several great advantages over normal methods of
optimization: (1) less experimentation is performed because areas with a lower
likelihood of having the optimum response are ignored, (2) focusing on the optimum
response in the first tier allows the convergence of adaptive algorithms to remain
fine grained, and (3) chemical and specimen samples are conserved because fewer
resources are needed to perform an experiment.

Parallel, adaptive and integrated approaches take the best of both parallel and
adaptive features, creating an amalgam of convergent and exploratory experimentation.
This, in turn, provides a greater throughput and the possibility of walk-away exper-
imentation compared with either parallel or adaptive experimentation individually.



