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Preface

The primary purpose of this book is to present the fundamental concepts
in the design and analysis of experiments with mixtures. The book focuses
on the most frequently used statistical techniques and methods for
designing, modeling, and analyzing mixture data, as claimed in the
literature, and includes appropriate computing formulas and completely
worked out examples of each method. Most of the numerical examples
were taken from real research situations.

The book is written for anyone who is engaged in planning or perform-
ing experiments with mixtures. In particular, research scientists and
technicians in the chemical industries, whether or not trained in statistical
methods, should benefit from the many examples that are chemical in
nature. Several examples have been taken from research activities con-
ducted in areas of food technology, while some examples were provided
by research entomologists. Persons who are engaged in applied research
in universities, principally from such departments as chemical engineer-
ing, chemistry, and statistics, as well as scientists in areas of agriculture
such as food science, entomology, and nematology, should find the
methods that are presented to be relevant and useful in their research. As
a textbook on the subject of mixture experiments, the contents could
serve quite nicely as a one-semester course in most applied curricula, or
perhaps could supplement the coverage of a two-semester sequence of
regression and response surface methodology.

Since this is the first edition, it has been necessary to exercise con-
siderable selectivity in the choice of topics covered. Hence no claim is
made that the coverage is exhaustive in either scope or depth. However,
it is my feeling that the reader who works through the numerical
examples in the middle five chapters (Chapters 2-6) and answers the
questions listed at the end of these chapters will achieve a high level
working knowledge of the tools that are used by most of the practitioners
today who are involved in solving mixture problems.

The mathematical prerequisites have been kept to a minimum. Sum-
mation notation is used throughout and some background knowledge of
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viii PREFACE

the use of matrices is helpful. A review of matrix algebra is presented in
Chapter 7 along with a discussion of the method of least squares for
obtaining the parameter estimates in polynomial models. Chapter 7 could
also serve as a refresher to readers who wish to review some of the
fundamental ideas on the use of matrices in regression analysis. The
matrix material has been placed at the end of the book so that the reader
with an adequate knowledge of matrices may begin with the subject of
mixture experiments in Chapter 1. Almost all of the computations
throughout the book were performed on the APL system 360.

The first chapter introduces the subject of mixture experiments with
several examples. Some general remarks on response surface
methodology are made. An historical perspective of the relevant lit-
erature which presented most of the statistical research on mixture
experiments is listed. Chapter 2 introduces the original mixture problem
where the Scheffé lattice designs and associated polynomial models are
applicable. Several numerical examples are provided that help to illus-
trate the fitting of the polynomial models to samples of mixture data that
were collected at the points of the simplex-lattice and simplex-centroid
designs.

In Chapter 3 a transformation is made from the system of the depen-
dent mixture components to a system of independent variables. With the
independent variables, standard regression procedures are suggested not
only for the designing of the experimental runs but for the fitting of
model forms as well. The idea of isolating the experimentation to a
subregion of interest inside the simplex space where the region may be
ellipsoidal or cuboidal in shape is also considered, Process variables, such
as cooking time and cooking temperature in the preparation of fish
patties, are introduced. Different types of model forms used to measure
the influence the process variables could have on the blending charac-
teristics of the components in mixture experiments are presented and
discussed.

How the placing of additional constraints on the component propor-
tions can affect the design configuration and the usual interpretation of
the model parameters is considered in Chapter 4. Experimental design
configurations for use in covering the restricted region of the simplex are
mentioned, as are several types of polynomial model forms used for
depicting the surface characteristics. Pseudocomponents are introduced,
and the use of pseudocomponents rather than the original components is
seen to simplify the steps in the design construction and the fitting of
models when lower bound constraints are placed on the original com-
ponent proportions. Some discussion on the design strategy when some or
all of the component proportions are subjected to both upper and lower
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bound constraints is presented along with some suggested modifications
that need to be made to interpret the model coefficients in these highly
constrained problems. Grouping the components by categories is also
studied.

Chapter 5 presents many techniques that are used in the analysis of
mixture data. Testing the form of the fitted model, model reduction
procedures, and the screening of unimportant components are just some of
the topics covered. Investigating the shape characteristics of the surface by
the measuring of the slopes of the surface along the component axes is
discussed. Combining lattice designs in the mixture components with
factorial arrangements of process variables is illustrated with data from a fish
patty experiment in which patties that were made from three species of fish
are prepared and processed by the three cooking and processing factors.

Alterations made to some of the terms of the Scheffé polynomials as
well as the suggestion to use nonpolynomial models to model certain
types of phenomena is the theme of Chapter six. Models that are
homogeneous of degree one are shown to model additive component
effects better than the polynomials. The use of ratios of the components
as terms in the model is suggested particularly when relationships be-
tween the component proportions are more meaningful than the actual
fraction of the mixture each component represents. Standard orthogonal
designs, such as standard factorial arrangements, that can be used with
independent variables are shown to be useful when working with ratios.
Cox’s polynomial, which is used for measuring the components effects, is
compared with the several forms of Scheffé’s polynomials. Two classes of
octane-blending models are presented at the end of the chapter, and data
are provided to help illustrate the numerical computations that are
required to set up the prediction equations. Chapter 6 ends with a list of
topics that were not covered here but which hopefully will be discussed in
a future edition.

I am extremely grateful to many friends for their help in compiling the
material for this work. In particular, I am indebted to Drs. John W.
Gorman and R. Lymann Ott, Professors Irving John Good (Virginia
Polytechnic Institute and State University) and Andre I. Khuri (Uni-
versity of Florida), with whom I have had the pleasure of working on
research problems in mixtures, and to Dr. Hubert M. Hill (Tennessee
Eastman Company), who introduced me to the subject of mixture
experiments in the middle 1960s. I am very much indebted also to
Professor J. Stuart Hunter (Princeton University), who reviewed the
initial drafts of this book; his many thoughtful and detailed comments on
the style and content were instrumental in its organization. I wish to
thank the many authors and various publishers for permission to
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reproduce their papers and tables and to thank the staff at John Wiley
and Sons, particularly Beatrice Shube, for her encouragement in com-
pleting this work. Finally, I would like to express my sincere appreciation
to Donna Alexander for her excellent typing of the final manuscript.

Joun A. CorNELL

University of Florida
Gainesville, Florida
August 1980
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CHAPTER 1

Introduction

Many products are formed by mixing together two or more ingredients.
Some examples are as follows:

1. Cake formulations using baking powder, shortening, flour, sugar, and
water.

2. Building construction concrete formed by mixing sand, water, and one
or more types of cement.

3. Railroad flares which are the product of blending together proportions
of magnesium, sodium nitrate, strontium nitrate, and binder.

4. Fruit punch consisting of juices from watermelon, pineapple, and
orange.

In each of cases 1-4, one or more product properties is of interest to
the manufacturer or experimenter who is responsible for mixing the
ingredients. Properties such as (1) the fluffiness of the cake or the layer
appearance of the cake where the fluffiness or layer appearance is related
to the ingredient proportions; (2) the hardness or the strength (measured
in psi’s) of the concrete, where the hardness is a function of the percen-
tages of cement and sand and water in the mix; (3) the illumination in
foot-candles and the duration of the illumination of the flares; and (4) the
fruitiness flavor of the punch which will depend on the percentages of
watermelon, pineapple, and orange that are present in the punch. In each
of examples 1-4, the measured property of the final product depended on
each of the individual ingredients being present in the formulation.

Another reason for mixing together ingredients in blending experi-
ments is to see if there exist blends of two or more ingredients that
produce more desirable product properties than is obtainable with the
single ingredients individually. For example, let us imagine we have three
different gasoline stocks, labeled A, B, and C and that we are interested



2 INTRODUCTION

in comparing the antiknock quality of the three stocks, singly and in
combination. In particular we would like to know if there are com-
binations of the stocks, such as a 50% :50% - blend of A:B, or a
33% :33% :33% blend of A:B:C, or a 25% :75% blend of B :C, which
yields a higher antiknock rating than is obtained from using A alone or
from using B alone, or C alone. If so, we would probably select the
particular blend of two or more gasoline stocks that produces the highest
rating, assuming of course that all other factors such as the cost and
availability of the blending ingredients remain fixed.

In each of cases 1-4 listed above, it is assumed that the properties of
interest are functionally related to the product composition and that, by
varying the composition through the changing of ingredient proportions,
the properties of the product will vary or change also. From an experi-
mental standpoint, often the reason for studying the functional relation-
ship between the measured property or the measured response (such as
the strength of the concrete) and the controllable variables (which in this
case are the proportions of the ingredients of cement to sand to water) is
to try to determine if sonmre combination of the ingredients can be
considered best in some sense. The best ingredient combination for the
concrete would be the combination that produced the absolutely strongest
concrete without increasing cost. In an attempt to determine ‘the best
combination of the ingredients (or combinations if more than one blend
produces concrete samples having approximately equally high strengths),
often one resorts to trial and error. Other attempts resemble ‘‘scattergun”
procedures, where a large number of combinations of the ingredients are
tried. The procedures can require large expenditures in terms of time and
cost of experimentation and in most cases better methods can be
employed. Procedures used in screening unimportant mixture ingredients
are discussed in Section 5.7. Before we discuss some methods that have
been developed for studying functional relations and are referred to as
response surface methods, we introduce the general mixture problem.

1.1. THE GENERAL MIXTURE PROBLEM

To formulate our thinking about experiments involving mixtures, we
simplify the gasoline-blending example mentioned earlier by considering
only two gasoline stocks, which we label fuels A and B. Instead of
discussing the antiknock rating, let us assume that the response of interest
is the mileage obtained by driving a test car with the fuel where the
mileage is recorded in units of the average number of miles per gallon. It is
known ahead of time that fuel A normally yields 13 miles per gallon and
fuel B normally yields only 7 miles per gallon. If the car is tested with
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Two gallons

One gallon One gallon
RS (\
B [ _ ) =1
R A KA - “4,
4 e G
A B A+ B
13 miles 7 miles 20 miles or
<
4s°</ B
S
(A + B)
2
10 miles

FIGURE 1.1. Summing the miles per gallon of fuels A and B.

each fuel separately by driving with 1 gallon of fuel A and then with 1
gallon of B, we would expect to drive 13+ 7 = 20 miles on the 2 gallons or
equivalently, we expect to average 20/2 = 10 miles per gallon (Figure 1.1).
The question we should like to answer therefore is, “If we combine or
blend the two fuels and drive the same test car, is there a blend of A and
B such as a 50% :50% blend or a 33% :67% blend of A :B that yields a
higher average number of miles per gallon than the 10 miles per gallon
that was obtained by simply averaging A and B?”

To answer this question, an experiment is performed that consists of
driving the test car containing a 50% :50% blend of fuels A and B. A trial
consists of driving the car with 2 gallons of fuel until the fuel is used up.
Five trials were performed with the same car and the average mileage was
calculated to be 12.0 miles per gallon. (See Table 1.1.)

The average number of miles per gallon for the blend is 12.0 miles per
gallon and is higher than the simple average mileage of the two fuels

TABLE 1.1. The average mileage for each of five trials

Mileage from Two Gallons of Average Mileage

Trial 50% :50% Blended Fuel per Gallon
1 24.6 12.30
2 233 11.65
3 24.3 12.15
4 23.1 11.55
5 24.7 12.35

Overall average 12.00




