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Preface

It is the author’s intention to integrate, into a form suitable for mechanical
engineering undergraduates, an introductory treatment of

1. Physical system analysis,
2. Control system design, and
3. Sensitivity analysis.

It is the author’s opinion that closed loop insensitivity to parameter change
is the most important topic of feedback design theory.

A secondary objective is to prepare the student for modern control theory.
State space concepts are introduced, and nonlinear regulators are discussed.
The discussion of frequency domain centers on the Nyquist diagram because
it is felt that the beginning student will, in this way, be prepared for advanced
topics, such as Popov stability, if he thoroughly understands vector-loci
techniques.

The outline for this text is prepared with the view that computers will
play a major role in all aspects of modern engineering. For this reason,
detailed instructions for construction of root locus diagrams, Bode diagrams,
and Nyquist diagrams for complicated systems have been deleted. In place of
such contruction rules, the author supplies discussion which will, it is hoped,
increase the student’s ability to extract all important information from these
fundamental diagrams. Even at this date the construction of these diagrams
is easily programmed on a computer (see Appendix C).

The author relied heavily on the contributions of Y. Takahashi, H.

xi



Xxii Preface

Paynter, D. Karnopp, and R. Rosenberg in the theory of physical system
analysis; R. Tomovic and I. Horowitz in sensitivity analysis; and W. Los-
cutoff in state space analysis. It is hoped that the text represents a true
integration of the theory contributed by these researchers into a form suit-

able for the beginning student of systems theory.
There are several unique features in this text. The treatment of right half-

plane zeros in the chapters on root locus and frequency domain techniques
points up some interesting facts. State variable analysis is motivated with an
introduction to simulation and synthesis techniques. Another unique feature
is the use of frequency domain methods to show, for one simple example,
the accuracy of various orders of truncated state variable models of a distri-
buted parameter model. I think the users of this text will discover other
innovations.

The text contains sufficient material for a one-year course on introductory
systems theory even if the sections and chapters marked with an asterisk
are omitted. The sections marked with an asterisk were included in order to
provide the student with material that can aid his study of advanced topics.

A number of students made valuable corrections to and comments on the
text. Ching Yung and John Seevers deserve special mention. Jeff Young
bravely read the entire final draft and kindly concealed a good part of his
amusement. Brian Crews assisted with figures.

H. Brandt and W. Giedt, Chairmen of the Department of Mechanical
Engineering, supplied the encouragement to write this book. Acknowledgment
is also made to typists Lois Wilson, Theda Strack, Winnie Letson, and Renee
Dominguez; may their neurons unboggle and may they recover from their
harrowing experience. A special thanks to Ruth Moorhead, who typed the
final draft in such an excellent manner.

J.W.B.
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Introduction:
Feedback Control

and Dynamic Systems
Analysis

1.1 Feedback Control

To illustrate the concept of feedback control, the applied mathematician
Norbert Wiener described a human being grasping an object.!* The process
is illustrated in Figure 1.1. The desired hand position is the position of the
object to be grasped. The brain compares this position with the actual hand
position, which is measured and fed back to the brain by the eye. The differ-
ence between the actual and desired position of the hand is the error signal,
which, if not zero, causes another part of the brain (the compensator) to send
appropriate signals to muscle cells. This prime mover converts available
energy (stored chemical energy in this case) into useful work and moves
the hand or controlled object. If all the elements of the feedback system are
working properly, the hand will be moved in a manner so as to continually
reduce the magnitude of the error signal until the hand is close enough to
the object to grasp it.

The description of many other physiological functions in such a manner
Is quite popular, and, as a matter of fact, many different types of pathologies
may be thought of as malfunctions of one of the elements of some physiologi-
cal feedback system.® Wiener identified similar types of feedback loops in
social organizations.”'® Allen describes the operation of feedback in eco-
nomic systems. ‘"

It is important to gain some insight into the necessity for feedback itself
and for the compensator element within a feedback loop. In concise terms,
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Figure 1.1. Elements of a feedback system; Wiener’s classical
example.

the feedback loop corrects for inaccuracies in the operation of individual loop
elements and for the occurrence of disturbing signals. The eye, after all,
provides only an estimate of the three-dimensional position, and the muscle
contractions do not respond perfectly accurately and consistently to stimuli
from the brain. However, the overall feedback system accuracy is much
higher than the accuracy of either of these components because the compen-
sator will always react to nonzero error and eventually force the hand to
the correct position. Examples of disturbing signals are unforeseen forces
applied to the hand from an external source (e.g., the result of the operation
of a physiological feedback system of a coed) and physiological signals which
affect the operation of the muscle. The effect of disturbance is an increase in
the magnitude of the error signal, which, once again, is corrected by the
operation of the feedback system.

A third function provided by the feedback system is compensation for
parameter variation. Muscle fatigue could cause a great deal of change in
the response of the prime mover in the feedback loop illustrated in Figure 1.1.
A remarkable fact about feedback systems is that the variation in perfor-
mance of the system is often far less than the associated variation of perfor-
mance of any of the individual elements within the loop. Thus, one would
expect that a great deal of muscle fatigue (parameter change) would occur
before the performance of the feedback system, described by Wiener, is
affected. It is little wonder that evolutionary processes provided the human
body with many feedback loops.

The final concept to be gleaned from this simple example is the role of
the compensator in the smooth operation of the feedback system. The hand,
of course, has inertia and, once set in motion by the muscle prime mover,
will continue to move until the muscles exert a braking or stopping force. If
the braking force is exerted too late, the hand will overshoot its target.
The resulting error will activate the feedback mechanism, which will tend to
bring the hand back to the correct position, but a better-quality performance
would be one in which the hand is brought smoothly to the desired position
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with little or no overshoot. No overshoot could be accomplished if the brak-
ing action were anticipatory, i.e., if the braking were applied slightly early.
It is the function of the compensator to operate upon the feedback informa-
tion and provide the anticipatory control actions.

The main objective of this text is to present the application of the feedback
principles, described above, to the design of automatically controlled engi-
neering systems. An example of such a system is the first radar-controlled
antiaircraft gun, which Wiener helped develop during World War II. The
development of this instrument is a significant event in the history of auto-
matic control because, for the first time, mathematical techniques which had
previously been used to design electrical feedback amplifiers were abstracted
and applied to the design of a mechanical system. Abstract mathematical
techniques will be strongly emphasized in this text.

In the radar-controlled weapon, the aircraft angular position is the
desired angular position of the weapon and is measured by radar. The actual
weapon position can be measured with a potentiometer and an electrical error
signal is generated. The compensator is an electrical network which must
be designed to provide the proper anticipation. The prime mover supplies
the energy to drive the system and, in this case, is a hydraulic motor which
is activated by an electrical signal from the compensator. The controlled
object is the weapon, which has inertias and frictions which must be over-
come by the prime mover in order to reduce the error. An important type
of parameter variation is the extreme variation in the frictional properties
of the grease-lubricated connections which is induced by temperature varia-
tions and/or contaminants. The feedback systems developed for such weapons
are insensitive to such parameter variations.

1.2 Early Examples of Mechanical Feedback
Systems®

While World War II marks the beginning of the development of mathe-
matical automatic feedback control theory by Wiener and Bode and others,
the actual use of feedback systems greatly precedes this event. Since several
of the early feedback devices are still used today in some form or another,
it is instructive to study the early applications of feedback.

The first example is the control of the volume flow rate of a fluid, which
was accomplished by the Alexandrian Greek Ktesibios in the third century
B.C.*> The device is illustrated in Figure 1.2. The variable to be controlled
is the flow rate at the outlet. The main purpose of this simple feedback system
is to correct for large fluctuations or disturbances in the supply pressure. To
understand the operation of the system, assume that some large, unforeseen
increase occurs in the supply pressure. The inlet flow rate will increase, caus-
ing an error signal, i.e., a difference between inlet flow rate and outlet flow
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Flow Figure 1.2. Flow control system of
Rate Ktesibios (third century B.C.).

N
rate. This error signal will ultimately cause the float to rise and restrict the
inlet flow area. The system will then come to equilibrium as the inlet flow
rate is decreased until it equals the outlet flow rate. Note that the system
comes to equilibrium with a slightly increased head in the regulator tank and,
since outlet flow rate is proportional to this head, with a slightly increased
outlet flow rate. The fact that makes the system effective is that the inlet flow
rate is strongly dependent on inlet flow area and, hence, on the vertical posi-
tion of the float. Thus, negligibly small changes in outlet flow rate (and regu-
lator tank head) are associated with large supply pressure disturbances.
The main application of Ktesibios’ invention was in the development of
water clocks. Notice that no compensator or prime mover is included in
Ktesibios’ feedback loop.

The development of feedback sensors (see Figure 1.1) seems to have been
the crucial step in the synthesis of early engineering feedback systems. Mayr
describes many of these sensors.> For instance, the invention of the thermo-
stat by the seventeenth-century Dutchman Cornelis Drebbel (working in
England) led to the development of feedback temperature control systems.
An improved eighteenth-century version of the thermostat is illustrated in
Figure 1.3. The tube is immersed in the medium whose temperature is to be
controlled. Because of differences between the coefficients of expansion of
iron and lead, temperature changes in the medium induce corresponding
changes in the displacement of the upper edge of the tube, x. The displace-
ment, x, serves as feedback information (see Figure 1.1) in temperature feed-
back loops. The displacement, x, is input to a linkage which regulates the
angular position of a damper, which in turn regulates the flow of gas to
a combustion chamber (the prime mover). Large variations in the quantity
and quality of fuel in the combustion chamber motivated the synthesis of
these early temperature control systems.

Eighteenth- and nineteenth-century British millwrights were very inventive
and provided many developments in feedback devices and synthesized several
interesting feedback loops.”® It is instructive to speculate on the reason



