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Greetings from the Conference Chair
On behalf of the Institute of Electrical and Electronic Engineers and the Neural Network Council, I
am pleased to welcome you to the Fifth IEEE Intemnational Conference on Fuzzy Systems. I also
extend you a warm welcome to the city of New Orleans. Bienvenue a la Nouvelle Orleans.

Our program will be described in more detail by the program chair, but I would like to recognize
the strength and scope of the FUZZ-IEEE conferences. This year we have had submissions of
over 440 papers from 33 countries representing every continent. The previous FUZZ-IEEE
conference was in Japan and the next will be in Spain further illustrating the increasing
international scope of this conference and the fuzzy set research community.

I must thank all the persons who have assisted me in so many ways in organizing this conference.
In particular I wish to thank the outstanding organizing committee for this year's conference,
especially the time and effort of the program chair, Don Kraft. I have received excellent advice
from several previous chairs including Jim Bezdek, Enrique Ruspini and Piero Bonissone.
Although I did not not always follow their advice, I generally found later that I wished I had!

I hope you will enjoy the technical program and the other activities at the conference, especially our
~ special banquet at the Aquarium of the Americas. I also hope you will find time to enjoy the many
aspects of New Orleans and its unique cultures; be sure to: Laissez les bon ton rouier !

Message from the Program Chair

We believe we have organized an outstanding program for the technical part of this year's FUZZ-
IEEE conference. Over the three days of the conference there are five tracks of oral presentations
totaling 51 separate regular sessions, 7 invited sessions and one special panel session.
Additionally we have two outstanding plenary sessions and 6 poster sessions. There were a total
of 443 papers received for the conference. After complete reviews and final evaluation by the
program committee, 218 papers were scheduled for full oral presentation and 91 were additionally
placed into poster sessions.

I would especially like to thank the program committee for their efforts in ensuring the quality of
the conference. Additionally I would like to acknowledge numerous other referees who were so
generous of their time in producing thoughtful reviews. Finally I must thank all the researchers
whose papers submitted for presentation in the next three days have made this a successful
conference for all participants.

i/

Frederick E. Petry Donald H. Kraft
General Chair FUZZ-IEEE '96 Program Chair FUZZ-IEEE '96
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Studies of Inference Rule Creation using LAPART

Thomas P. Caudell* and Michael J. Healy**

t Interdisciplinary Computational Systems Group
Department of Electrical and Computer Engineering
University of New Mexico
Albuquerque, N.M. 87131

Tt Boeing Information Services
MS 7L-66
P.O. Box 24347
Seattle, WA

Abstract

The logical neural architecture LAPART is used in a mode that allows through learning the easy
creation and extraction of IF-THEN inference rules from data. This paper first describes ART1
and the complement coded stack input binary representations. Next we present a more detailed
discussion of LAPART. Then we show how rules are learned and extracted from the memory
templates of the ART1s. We present a pedagogical example of rules extracted from a simple
data set. Finally, we note that a fundamental difference between LAPART rule-based systems
and regular rule-based systems is the existence of a “rule attractor” that can enhance system
generalization in a controlled manner.

1.0 Introduction

Throughout the history of knowledge-based systems, the acquisition of “knowledge” or
rules from humans and data sets has been one of the larger technical chailenges. A number of
methodologies have been developed in the field of Artificial Intelligence and Machine Learning
to address this challenge. More recently, feedforward neural networks have been used to learn
rules through training with the Backpropagation algorithm. The primary technical issue with is
work involves the extraction of the rules from the feedforward weights in the network. Since all
weights are typically used in the process of mapping an input space into an output space, the
individual rules are not easily teased apart.

Other neural architectures are now being used for rule learning that drastically simplify
the extraction process[1,2,3,4 ]. In this paper, we focus an architecture that is based on the self-
organizing model of ART1(5] called LAPART. LAPARTJ1] is a neural network architecture
that is composed of two ART modules set side-by-side and allowed to meddle in each other’s
workings. It is capable of clustering complex patterns and learning associations between these
clusters in different domains.

The next Section briefly describes the algorithmic form of the ART1 neural networks
which make up LAPART plus supporting concepts. Section 3 gives a more detailed description
of LAPART. Section 4 discusses rule extraction and rule attractors, and illustrates the idea with
an example. Section 5 concludes the paper.

2.0 The ART1 and Input Representations

In this Section, we discuss the ART1 algorithm, stack numeral representations of analog
input values, complement coding of input patterns, and the interpretation of the learned ART1
templates as hyberboxes.

2.1 Algorithmic form of ART1

The ART] is a binary in / binary out neural network model that is canonically represented
by a coupled set of ordinary noniinear differential equations(5]. If appropriate restrictions are
made on the relationship between the dynamical time constants, the learning rates, and the
length of time the input pattern is stable on the networks input nodes, then this system of
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equations reduces to a procedural algorithm[6]. The dynamical time constants are required to
be much smaller than the learning rate, which is in turn much smaller than the stabie
presentation time. These restrictions lead to a "fast learning™ mode of operation where the
learned weights in the system reach asymptotic stability before a new input pattern is presented.
The procedural algorithm autonomously places binary input patterns into clusters. Each cluster
is represented in neural memory by an abstraction called a template prototype. A template is a
logical conjunction of all the patterns in the cluster, and are formed and modified during the
learning (training) process. If the bits in the binary input pattern represent logical predicates,
then the template codes what is logically TRUE of all of the input patterns in the cluster. The
number of clusters discovered by the network is determined in general by the underlying
structure or semantics of the training set of input patterns, the order of presentation of input
patterns, and a system level threshold called the vigilance factor. During testing of the trained
network, neural memories or templates are directly recalled when examples from known
clusters are presented. On the other hand, the learning process remains forever plastic in this
model, even after training, allowing new or novel input patterns to be learned without disturbing
old memories

2.2 Stack Interval Representations

A common criticism of binary networks is their inability to process analog inputs. This
can be easily overcome by the appropriate choice of an input representation, such as binary
coded decimal (BCD). In'this sub-section we describe a representation call stack numerals[7]
that has high utility in this regard. In particular, they represent analog numbers in binary
patterns in a way relevant to ARTI clustering; patterns similar as measured by the ART]
metrics correspond to numbers which are also similar in magnitude. This is not true of the BCD
format used in digital computers, in which 0 and 1 are coefficients of powers of 2.

A stack is defined as a binary vector with N components where an analog value is
represented by the number of ON bits "stacked" consecutively from one end of the vector, with
the remaining bits in the vector set to OFF. Another term for this is Thermometer Coding. The
analog value is affine transformed to fit within a fixed minimum and maximum interval, defined
as all OFFs and all ONs respectively. The precision with which the value is coded depends on
N. For example, to code a minimum/maximum bounded value to one percent precision over
this interval would require a stack with N=100. When an analog value is represented in this
fashion, it is referred to as a stack numeral. Stack numerals are a form of course coding that
address the precision/noise tradeoff directly. When a value is transformed into the interval and
quantized into bits, signal smoothing automatically occurs that performs low pass filtering.

444494
F200 0000

N%m

F1 i
Stack

QEXRY PRy | Numeral

SX@

Input Pattern

Figure 1. An eight component Stack Numeral representation of a single analog value bemng input to an ART1
neural network.

Two stack numeral binary patterns are similar in the ART] sense when they fall into a
Cluster with the same template pattern. If the corresponding values were coded in BCD, this
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equivalence would not hold. For example, the values 122 and 128 represented in powers of
two, with low-order binary digits to the right, yield the dissimilar patterns 01111010 and
10000000, respectively, even though they are in fact close in magnitude. By contrast, a stack
numeral representation requires a minimum of 128 vector components to represent the numbers
0- 128, but the two stacks will be very close as judged by the ART1. Figure I illustrates a stack
numeral input to an ART1 module. (A simple neural network has been devised which converts
an analog value into stacks{7].) If the number of analog inputs m is greater than one, stack
numeral representations of each analog value are concatenated together to form the composite
input vector for the ART1.

2.3 Complement Coding

ART1 networks learn through repeated exposure to a set of training data. Georgiopoulos
et al [8] proved that in an ART1 system processing N -bit patterns / of constant size | /[ |,
template recoding, and therefore learning, will cease after the first pass through a fixed set of
input patterns which are presented again, arbitrarily reordered, in subsequent passes. This
property can be achieved for any arbitrary binary input pattern encoding through the use of
“complement coding”[3,7]. Let Y denote a binary input pattern intended for ART1. In
complement coding, the input pattern actually input to the ART system is compose of two parts
concatenated together

I=(Y, ¥) ,
where

YY=1-Y
that is, the one’s complement. Figure 2 illustrates complement coding by displaying the stack
vectors and their complements next to each other. . Notice that the ART1 system now processes
the set of binary patterns { ¥; } with 2Nm total components, where the original input space
consisted of N binary components and m analog values.

positive compiement

max

min
Y, Y,

Figure 2. An illustration of a compiement coded stack numeral representation of a set of binary values {Y;}. Each

analog component stack numeral is plotted as a black bar where the height is proportional to its magnitude. Note
that the values must be normalized such that each component ranges between a max and min value. Taken together
as one input vector with twice the components, this defines the complement code.

2.4 Cluster Templates as Hyberboxes.

During ART1 learning with complement coded stack numeral input representations, each
cluster template adjusts to code the minimum and maximum analog values of all the patterns
that are associated with its cluster. This is the result of the conjunctive nature of template
leamning in ART1. The minimum portion is coded in the positive part of the template, while the
maximum is found in the complemented. The template minimums and maximums for each
variable can be extracted out of their respective portions of the composite learned templates. As
illustrated for a 2D case in Figure 3, the minimum and maximum points, taken as coordinates,
form boxes in the plane. For higher numbers m>2 of varnables, these become hyperboxes. The
hyperboxes form around clusters of points that are similar as judged by the ART1 network
[3,7].

Because of the use of complement coding, ART1 and LAPART learning converges very
rapidly, usually in a single pass through the training data. After learning has stabilized, learning
can be “turned off” and the system used as a logical inferencer using the learned rules based on
associations of the hyperboxes in different domains.
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Figure 3. Hyperboxes formed by ART1 templates when the 2D analog input patterns were complement coded
stacks. The labels indicate the min and max analog values decoded from the composite template for a single
cluster. There exists one such hyperbox for each learned template or cluster. These boxes begin to tessellate the
input feature space and are the bases for learned rules.

3.0 LAPART Architecture

LAPART[1] is a neural network architecture that is composed of two ART1 modules set
side-by-side and allowed to meddle in each other’s workings. It is capable of clustering
complex patterns and learning the associations between learned clusters in different domains.
LAPART is similar to ARTMAP in many ways[2]. This architecture defines a class of
networks that can be trained to associate classes of patterns appearing on the inputs of each of
its constituent self-organizing modules. The basis for the inference function of the LAPART
architecture is the coupling of two pattern organization networks through a system of lateral
interconnects, or a map field[1,2]. The interconnects implement a dual system of inference

rules. (see Fig. 4)
i =

2O O O O O O AARTH

2|
[9290999%1

NN [
Numeral
L&b Network Label Pattemns

Single Analog

Input Pattern
Figure 4. A diagram showing one instance of a LAPART, where a stack numeral is input to the A module and a
class label is input to the B module. The lateral interconnections are shown above the B module.

The LAPART system learns the inferences during presentation of training pairs of
patterns, through 1) ART pattern clustering, involving synaptic learning within each self-
organizing network, and 2) synaptic learning of the class-to-class inferences through the lateral
interconnects. A LAPART system can remain adaptive following training, continuing to learn
from observed patterns. Distinctly novel inputs are automatically classified separately from
those encountered in the past. Loosely speaking, the network “knows” when it has encountered
a pattern association that lies outside its trained generalization capability. LAPART has many
potential applications, including pattern recognition, function approximation, and explicit
learning of rules.

+
+
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4.0 Rule Extraction and Rule Attractors

A rule consists of a antecedent and a consequence. For example, “If A;=True and
A,=True then C;=True”, where the logical expressions “Aj=True and A;=True" is the
antecedent and “C;” is the consequence. Using LAPART, we can leamn such rules by
representing a combined representation of variables Ay and Az to the A-ART1 module, and
representing C; to the B-ART1 module[4]. If complement coded stacks are used for input
.representations, as discussed earlier, each ART1 will separately learn hyperbox templates, and
the lateral interconnects will learn a association between them. That is, each hyperbox in the A-
ART1 will imply a hyperbox in the B-ART1. After learning, when a new input pattern is
clustered into an A-ART1 hyperbox, the lateral connections from it will signal the B-ARTI to
readout its associated hyperbox. This constitutes an inference and therefore represents rules.

e X Xy

@ X ( Xg  (c) Xg

Figure 5. a) A scatter plot of data in two classes. b) the hyperboxes learned for the rules, c) the rules attractors,
white=Class 1, black=Class2, gray=Unknown..

For an illustrative example, consider the data for a two class pattern recognition problem
seen plotted in an m=2 dimensional analog input space in Fig. 5a. Fig. 5b plots the learned
hyperboxes and the lateral interconnections to the two class labels. Figure 5c plots the "rule
aftractor” for this problem. The attractor is defined as the volume of input feature space around
the hyperbox in which a new input pattern will be associate, in an ART] sense, with the cluster.
Note that this is a distinctly larger volume than would be found for a conventional rule-based
system, which requires a point be within the hyperbox to be considered TRUE.

X1 " : " ; X]

(@ Xg (b) Xo

Figure 6. a) Two overlapping normal distributions with different variances, b) a set of rule attractors for the two
classes, with ART-A vigilance =0.7, white=Class 1, black=Class2, gray=Unknown.

As a second example, LAPART was trained on 2000 samples drawn from two normal
distributions with means of (0,0) and (1,0), and variances of 1 and 4 respectively. The
distributions are seen in Fig 6a. After training, the network was tested on 32,000 points to
determine classification error. Using a grid search in vigilance during training, the highest
performance was found to be 78% at a vigilance of 0.53. to be compared to the Bayesian
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optimal of 82% [9]. A composite of rule attractors for vigilance of 0.7 is shown in Fig 6b.
Again, the basins of attraction for the rules can extend beyond their hyperboxes, effecting the
generalization power of the network. .

5.0 Conclusions _ »

With the use of ART1 modules and complement coded stack numerals, LAPART
provides a rapid rule leamner for symbolic (logical), analog, or combined data sets. In addition,
the extraction of the rules is a simple as decoding the learned templates. The antecedents and
consequences of the rules are represented as hyperboxes in the input and output feature spaces.
The rules can attract test patterns to themselves from regions outside the learned hyberboxes
called rule attractors. Conventional rule-based systems "fire" a rule only if a test pattern falls
within the hyperbox. The general effect of neural rule attractors on generalization when
compared to conventional rule-based systems is not known at this time. It is expected there will
be important differences in the two approaches. Still, the LAPART system 1s being used in
real-world applications of target recognition, process monitoring, and weather parameter
prediction[10]. Studies continue to understand the implications of the rule attractors to the
general inferencing problem.
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NEURAL NETWORKS AND EMERGING TECHNOLOGIES

Gail Erten Mary Lou Padgett Fathi M. Salam
IC Tech. Inc. Auburn University Michigan State University
ictech‘@mcimail.com mpadgett(@auburn.edu salam(@egr.msu.edu
Participants

This panel was organized by the authors and chaired by Dr. Gail Erten. The panelists are listed
below in alphabetical order:

H. P. Graf. AT&T Bell Labs

Thomas McKenna. The Office of Naval Research
Robert W. Newcomb. University of Marviand
Mary Lou Padgett. Auburn University

Benjamin Wah. University of lllinois

Overview

Neural networks and related soft computing algorithms and architectures represent the next step in
the evolution of information processing. Some of us involved in this field are trying to put eves and
ears on computers so they may not only look but see. not only hear but listen. Some are trving to
have computers learn to do things such as walking or talking simply by observing how it is done.
Some are testing their performance with seemingly impossible manipulations and modeling poorly
understood systems. Neural networks. models of the brain. procedures that define human
reasoning are natural sources of inspiration and enlightenment towards these goals.

Two categories of approaches define the domains of implementation. One approach is to apply
the concept of conventional processing to emulate neural algorithms, perhaps through interlinked
and concurrent processors. Another is to create networks of experimental computer chips. called
silicon neurons. that mimic data-processing functions of brain cells.

The vear 2000 is right around the cormer and represents an inspection point at which our world will
be judged by many future generations. The threshold of the third millennium is likelv to become
such an instance in the history of computing, as well. Several emerging technologies pertaining to
advances in materials. automotive and transportation systems. information. communication. and
computation, as well as manufacturing, are opening new frontiers in science and technology which
demand novel computing paradigms. The role of neural networks in redefining and expanding
computing, intelligent processing, and multimedia integration are explored by this panel. The goal
of the forum is to present an overview or a snapshot of examples of the status and role of neural
networks and related fields. Panelists with broad backgrounds in the field have been invited to
discuss directions and aims as well as to present their latest views.

Dr. Hans Peter Graf

Recognition is one of the key technologies driving advances in many industrial applications. For
example, image recognition is now an integral part in document processing, inspection of
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manufactured parts and surveillance. Moreover such important technologies as image compression
and computer-user interfaces depend more and more on image recognition. Neural nets have
become a widely accepted approach for recognition tasks. Typically. neural nets do not provide
complete solution for a problem. yet they represent a powerful suit of algorithms that can be used
in combination with other, 'conventional'. algorithms. Kev for a successful application of
recognition techniques is (still) to find good representations that the algorithms, neural or others.
will find proper solutions.

Dr. Thomas McKenna

If neural technology is to evolve bevond a tool for pattern recognition, it must incorporate and
exploit advances in related fields. Examples of such emerging multidisciplinary approaches will be
provided for computational neuroscience. mechanics. and material failure analysis. hydrodvnamics.
autonomous vehicle control. chemical engineering. and molecular genetics.

Professor Robert W. Newcomb

Hardware realization of neural nerworks is important since it represents a practical means to
implement real time signal processing with artificial neural networks. Discussion will center around
significant research areas where future progress can be foreseen. These include multiple valued
processors, adaptive-adjoint methods of implementing back propagation. biologically motivated
ANNs based upon D. K. Hartline's models. Kemp echo based neural type speech recognition
systems, and the design of chips which include live neuron signal processors.

Dr. Mary Lou Padgett

Neural networks research should be directed into areas which can help integrate neural networks
with supportive intelligent system capabilities. Exploring the full use of fuzzy' svstems and
genetic/evolutionary systems in a virtual environment should provide ideas for the implementation
of intelligent neural networks development environments. Providing a svstematic way to track the
heunistics and hunches that are part of model development can help to formalize. repeat and extend
valid ideas. It can also help check assumptions and reveal unexpected or erroneous responses to
new algonithms or ideas. Working on the statistical theory and stability theorems to facilitate
meshing neural and fuzzy systems should pay dividends.

In addition to development of intelligent working environments for neural svstems researchers. new
research endeavors should be encouraged in the integration of fuzzy and genetic components into
working neural systems. Internal incorporation of these strengths is an asset. So is linking neural
systems to the external system and its overall goals by using fuzzy and evolutionary / genetic
systems. Areas of concem include: hardware capable of such integration, stability and signal to
noise ratio in multi-modular or complex svstems. There is much to be gained from exploring these
avenues.

Professor Benjamin Wah

There are two important problems in the hardware support of neural network learning: (a) parallel
processing and VLSI designs to support learning and application of necural networks. and (b)
hardware/software supports for generating/emulating an environment necessary for learning. The
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first problem has been studied extensively by many researchers, but the latter is a less glamorous
problem that has been largely overlooked. A related question to be addressed i1s whether the
environment generated for learning is realistic or not.

For instance, to design a neural network to control jet engine fire, it may be necessary to create an
environment in which a jet engine can catch fire, and the neural network can be tested to put out the
fire. In addition. the color of the fire may indicate the type of fire, which may need to be
considered in the design. Creating such a testbed, either in hardware or in software, is a nontrivial
task. As another application, it may seem easy to design a neural network to load balance jobs in a
network of workstations. However, creating an environment in which realistic multiprocessing
workload can be repeated in the network of workstations is nontrivial. In general, a lot of the
research and applications of neural networks is hampered by the difficulty of creating a realistic
environment for learning and testing. Emerging technologies will help in the development of faster
and more robust learning algorithms but may not simplify the design of the learning environment.

Biographic Sketches of Panelists

Hans Peter Graf. a Distinguished Member of Technical Staff at AT&T Bell Laboratories in
Holmdel, NJ. is conducting research on image recognition and on the implementation of machine
vision algorithms on massively parallel processors. Since 1984 he has been working on neural net
models, designing micro-electronic processors and leading the implementation of vision systems tor
industrial applications. Among Dr. Graf's theoretical work are algorithms for the hierarchical
decomposition of complex images into elementary shapes. These algorithms are being used for
such applications as analyzing bank checks or finding the location and identity of people in
complex images. Mr. Graf received a Diploma in physics in 1976 and a Ph.D. in physics in 1981,
both from the Swiss Federal Institute of Technology in Zurich, Switzerland. He is a Fellow of the
[EEE and a member of the American Physical Societv. He is author and co-author of more than 90
articles on image recognition and neural networks. acted as guest editor for IEEE Micro and for the
J. VLSI Signal Processing and is associate editor of IEEE CAS.

Thomas M. McKenna received his B.S. degree from Massachusetts Institute of Technology
(Biology) and his Ph.D. from the University of North Carolina at Chapel Hill (Physiology-
Neurophisiology) in 1979. From 1971 to 1975 he was emploved at the Harvard Medical School
where he conducted research on primate cortico-cortical connections. and neuropharmacological
electrophysiological investigations of brain stem control in sleep states. His dissertation research
and subsequent post doctoral research at the University of North Carolina were concerned with the
functional organization of the somatosensory cortex. and stochastic neuron models. From 1982 to
1988 he was Assistant Research Neurobiologist in the department of Physics and the Center for
the Neurobiology of Learning and Memory at the University of California - Irvine. During this
period he conducted experimental research on neuronal coding in the auditory cortex and
theoretical neurobiology on biological neural nets and single neuron computations. Dr. McKenna
is currently a Program Officer in the Division of Cognitive and Neural Science and Technology, of
the Office of Naval Research and is responsible for the development, funding, and management of
basic research programs in neural computation, computational neuroscience. nonlinear dynamics
of neural systems. hybrid architectures combining neural nets with physical models for mechanical
and hvdrodvnamic svstems. computational vision, and sensory-motor systems. including control of
legged robots. These programs produce novel computational architectures and VLSI electronic
implementations of neural systems. He has developed a major new thrust in neural networks for
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mechanical diagnosis based on vibration signals. He serves as a member of the overall
management of the Accelerated Capability Initiative in Condition Based Maintenance and is team
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member of the IEEE Standards Board. IEEE-SB Liaison to the IEEE-Educational Activities Board
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