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the Institut d’Estudis Catalans to honor the memory
of Ferran Sunyer i Balaguer and to promote mathe-
matical research.
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be found at
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Preface

Our goal in this monograph is to present general existence and uniqueness
results for quasilinear parabolic equations whose operator is, in divergence form,
the subdifferential of a Lagrangian which is convex in |Vu| and has linear growth
as |Vu| — co. We devote particular attention to the case of the minimizing total
variation flow for which we study the Neumann, Dirichlet and Cauchy problem
in RY together with the main qualitative properties of its evolution. This kind of
problem appears in different contexts: image processing, faceted crystal growth,
continuum mechanics, etc. Motivated by the use of the total variation model in
image restoration, we started our study of the minimizing total variation (TV)
flow in collaboration with C. Ballester, by studying the corresponding Neumann
and Dirichlet problems [13], [14]. Later, in a joint paper with J. I. Diaz [15] we
studied the asymptotic behaviour of the solutions of these problems. This study
was continued in [34] where some extinction profiles were identified. In particular,
this provided some explicit solutions of the denoising problem in image processing.
The techniques developed for the total variation flow were extended to cover the
case of general convex Lagrangians with linear growth rate in the modulus of the
gradient, providing a general existence and uniqueness result in this case [16],[17].
Energy functionals with linear growth appear in different contexts, two classical
examples being the nonparametric area integrand f(£) = /1 + [|€]|2, which is
associated with the time-dependent minimal surface equation, and the Hencky
model in plasticity.

Let us summarize the contents of this book.

Chapter 1 is devoted to the study of the variational approach to image
restoration based on total variation minimization subject to the constraints given
by the image acquisition model. We review the model initially introduced by L.
Rudin, S. Osher and E. Fatemi [175] which had, on one hand, a strong influence
in the development of variational models in image denoising and restoration, and,
on the other, pioneered the use of the BV model in image processing. The chapter
contains the proof of the Chambolle-Lions theorem proving that the constraints
can be incorporated by means of a Lagrange multiplier, thus justifying the usual
numerical approach to the problem. Then we interpret the corresponding Euler—
Lagrange equation in terms of partial differential equations by means of the PDE
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characterization of the subdifferential of the total variation. This result follows as
a consequence of the results in [13] and has been presented in [48]. The approach
we present here is a simple and direct approach to the characterization of the sub-
differential of positively 1-homogeneous convex functionals of the gradient due to
F. Alter in his unpublished work [3]. Then we display a few experiments on image
restoration obtained with this model. The chapter also contains a review of the
main numerical methods used in the variational approach to image restoration.
We apologize in advance for any missing work.

In Chapter 2 we study the Neumann problem for the minimizing total vari-
ation flow. First we present the main existence and uniqueness results for this
problem, which are essentially taken from [13]. Due to the homogeneity of the
operator associated with the problem in L? for any p > 1 we prove that the semi-
group solutions are strong solutions. This, combined with the regularity results for
quasi-minimizers of the perimeter, permits us to prove a regularizing effect on the
level lines of the solution, a result which also holds for the solution of the restora-
tion problem. The chapter also contains a proof that solutions of the Neumann
problem stabilize as ¢ — oo by converging to the mean value of the initial datum.

The Cauchy problem for the total variation flow is studied in Chapter 3. The
purpose of this chapter is to prove existence and uniqueness of entropy solutions
for initial data in L] (RN ). This will enable us to study in later chapters the main
features of the flow in R thus, dismissing the effect of boundary conditions. First,
we study the flow in LZ(]RN )- In Section 2 we prove uniqueness of entropy solutlons
for initial data in L, (R"), using Kruzhkov’s method of doubling variables. Then
we prove existence for initial data in L} .(R"Y). We end up with the study of the
time regularity of solutions.

Chapter 4 is devoted to a study of the asymptotic behaviour and qualitative
properties of the solutions of the total variation flow in RY. We start by describ-
ing some numerically observed features of the flow, namely that local maxima,
(resp. minima) immediately decrease (resp. increase) and produce flat zones in
the solution. For that we shall need some radially symmetric explicit solutions of
the flow. We also note that the length of the level curves of the solutions is a
decreasing function of time. Our next purpose will be to describe the extinction
profile (the solution has a finite extinction time) of compactly supported solutions.
This behaviour is described by a function which is the solution of an eigenvalue

problem for the operator —div ( [Du ') The rest of the chapter is devoted to the

study of explicit solutions of this eigenvalue problem in the plane. In the radial
case, positive solutions can be fully characterized. Then we look for characteristic
functions which are solutions of it. This permits characterization of the bounded
sets of finite perimeter Q C R? for which the function u(t, z) = (1— P?glm ) Xa(z)
is an entropy solution of the minimizing total variation flow in R2. As an impor-
tant by-product of the eigenvalue problem, one can obtain explicit solutions of



Preface xiii

the Rudin-Osher-Fatemi image denoising model. The results of this chapter have
been taken from [13], [15], [34].

Chapter 5 is concerned with the Dirichlet problem for the total variation flow.
In this case, the homogeneity of the operator is lost, and the notion of entropy so-
lution in the sense of Kruzhkov is required to obtain a uniqueness result. Existence
and time regularity of entropy solutions follow from the usual semigroup theory
approach. The techniques introduced in this chapter will be the basis for results
in the next two chapters dealing with more general operators. The presentation of
this chapter is based on [14].

The next two chapters are devoted to a study of the Dirichlet problem for
quasilinear parabolic equations whose operator is, in divergence form, the subdif-
ferential of a Lagrangian which is convex and has linear growth in the magnitude of
the gradient. More precisely, we study the Dirichlet problem in a bounded domain
2 with boundary datum ¢ € L'(8), for the differential operator —div a(z, Du),
where a(z,§) = V¢ f(z,£), f being a convex function of ¢ with linear growth as
€l = oo. The regularity assumptions we need to impose on the Lagrangian f
exclude the total variation flow, i.e., the case f(£) = ||¢||, which was studied in
Chapter 5; but we include many examples relevant in applications, like the non-
parametric area integrand and Hencky plasticity. In Chapter 6 we prove existence
and uniqueness of strong solutions in L?(§)) using the theory of nonlinear semi-
groups generated by subdifferential operators. Now, to get the full strength of the
abstract result derived from semigroup theory, we need to characterize the sub-
differential of the energy functional associated with the problem. In Chapter 7
we prove existence and uniqueness of entropy solutions for data in L'(Q). Exis-
tence follows by means of Crandall-Ligget’s semigroup generation theorem, while
uniqueness is proved using again Kruzhkov’s method of doubling variables. The
results of these two chapters are essentially taken from [16] and [17], respectively.

The book finishes with three appendices in which we outline some of the
main tools used in the above chapters. In the first one (Appendix A) we present
without proofs the main results of nonlinear semigroup theory which is the main
tool used in this text to prove existence of solutions. Due to the linear growth of the
energy functionals associated with the problems studied in this monograph, the
natural energy space to study them is the space of functions of bounded variation.
In Appendix B we outline some of the main points of the theory of functions of
bounded variation used in the previous chapters. Finally, following G. Anzelloti’s
paper [25], Appendix C is devoted to the main results about pairings between
measures and bounded measurable functions, one of the fundamental tools of the
text.

It is a pleasure to acknowledge here the debt we owe to our coauthors, namely
C. Ballester, G Bellettini, J.I. Diaz and M. Novaga. This monograph could not
have been written without their contribution. We would like to thank also F. Alter
for permitting us to reproduce his unpublished work [3]. We are also indebted to
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B. Rougé and the CNES for stimulating discussions about the restoration problem
which gave us a better understanding of it, and for his kind permission to repro-
duce the images of Chapter 1. We thank M. Bertalmio, A. Solé and B. Rougé
for providing us these experiments. Finally we are indebted with L. Rudin from
Cognitech Inc. for stimulating us to work on the theoretical analysis of the to-
tal variation restoration problem which motivated the subsequent work. Thanks
should also be extended to many colleagues with whom we have shared their views
on image processing and PDEs, among them we would like to thank Ph. Bénilan,
J. Blat, A. Chambolle, P.L. Lions, F. Malgouyres, L. Moisan, S. Moll, J.M. Morel,
P. Mulet, S. Osher, G. Sapiro, S. Segura, J. Toledo and J.L. Vézquez.

Last but not least, the first and third authors acknowledge partial support by
the Spanish DGICYT, Project PB98-1442, the PNPGC, Project BFM2002-01145
and the RTN Programme of the EC “Nonlinear Partial Differential Equations De-
scribing Front Propogation and other Singular Phenomena”, reference HPRN-CT-
2002-00274. The second author acknowledges partial support by the Departament
d’Universitats, Recerca i Societat de la Informacié de la Generalitat de Catalunya,
by PNPGC project, reference BFM2000-0962-C02-01, by a CNES project, and, in
previous stages of this work by the TMR European Project “Viscosity Solutions
and their Applications”, reference FMRX-CT98-0234.

Barcelona and Valencia, December 2002
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Chapter 1

Total Variation Based Image
Restoration

1.1 Introduction

1.1.1 The Image Model

For the purpose of image restoration the process of image formation can be
modeled in a first approximation by the formula [207]

ug = Q{II(k * u) + n}, (1.1)

where u represents the photonic flux, k is the point spread function of the optical-
captor joint apparatus, Il is a sampling operator, i.e., a Dirac comb supported by
the centers of the matrix of digital sensors, n represents a random perturbation
due to photonic or electronic noise, and ) is a uniform quantization operator
mapping R to a discrete interval of values, typically [0, 255].

The point spread function of the optical-captor apparatus. The optical-captor
system is modeled by a convolution operator whose kernel k is called its point
spread function. Indeed, both the optical system and the captor can be considered
as linear and translation invariant systems, and, therefore, each of them is modeled
by a convolution operator. The convolution kernel k& of the joint system formed by
the optics and the captor is thus the convolution of the point spread functions of
both separated systems.

In CCD arrays, each detector is a flux integrator (which counts the number
of photons arriving to it). Thus, its point spread function is the normalized char-

acteristic function of a square (supposing that each detector has this geometry)
-2 B x [5,2], ie.
29 9 23913 b

1
kaee(®:4) = 2X|-2.81x(3.81



2 Chapter 1. Total Variation Based Image Restoration

Its corresponding Fourier transform, also called the modulated transfer function
of the system, is then

MTFdet (51 5 52) = Sinc(p€1 )SinC(pfg),

where .
) sin &
sinc(z) = ;
T

We note that we are using the Fourier transform in the form

+o0

F(f)(€) = f(6) = / f(w)e2 i€ dy. (12)

—0o0

The optical system has essentially two effects on the image: it projects im-
ages of the objects from the object plane to the image plane and degrades them.
The degradation of the image due to the optical system makes that a light point
source loses definition and appears as a blurred (small) region. This effect can
be explained by the wave nature of light and its diffraction theory. We shall dis-
card other degradation effects due to imperfections of optical systems such as lens
aberrations [22]. Thus our main source of degradation will be the diffraction of the
light when passing through a finite aperture: those systems are called diffraction
limited systems.

A light source is called coherent if it emits light with a definite wavelength.
If the emitted light is a mixture of wavelengths we say that the source is inco-
herent. Let us also recall that intensity of the light is given by the square of the
electromagnetic field (a solution of Maxwell’s equations). These two remarks will
be taken into account to obtain the equations relating the electromagnetic field
with the intensity field measured by the sensors.

Since we are assuming that the optical system is linear and translation in-
variant we know that it can be modeled by a convolution operator. Indeed, if the
system is linear and translation invariant, it suffices to know the response of the
system to a light point source located at the origin, which is modeled by a Dirac
delta function 4, since any other light distribution could be approximated (in a
weak topology) by superpositions of Dirac functions. The convolution kernel is,
thus, the result of the system acting on 4.

We assume that the lens is located in an open bounded region A of a plane.
The point spread function h(z,y) in case of a monocromatic wave is approximately
given, modulo a phase factor, by the Fourier transform of the characteristic func-
tion of the lens aperture:

h(z,y) = (phase)F (X 4(\d;-, A\d;-),

where X represents the wavelength of the light and d; the distance from the lens to
the image plane. This formula is obtained from the Maxwell equations using Kir-
choff’s scalar theory of diffraction and the Fraunhofer assumptions: the diffraction
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aperture in the screen is small compared to the distances d; and R’ from the aper-
ture to the image plane and light source, respectively. For a detailed description
of the theory of diffraction we refer to [184]. Intuitively, as the light wave arrives,
each point of the aperture becomes the source of a spherical wave propagating
to the image plane. After considering the above approximation, in particular that
d; is large compared to the dimensions of the aperture and the image, the point
spread function h is given by ([184],(63])

ik

A
h(z,y) = St
1

(=%+9%) / / Xa(\d;x', /\diy')e_%i(“'*yy/) dz' dy’  (1.3)

where k = 27”

If we measure the light intensity, i.e., the square of the electromagnetic field,
and we assume that the system is linear and translation invariant, the formula re-
lating the light intensity emitted by the object I and the light intensity measured
by the optical system I is

o0 (o o]
I(z,y) :/ / |h(z — 20,y — y0)|* Lo(M ™ z0, M~ 'yo) dz¢ dyo, (1.4)
O —00

where M is the magnification factor, i.e., the quotient of the distance between
two points of the image plane and the corresponding points in the scene, which is
given by

d;

b

2
20 being the distance between the object plane and the plane of the aperture,
where the origin of our coordinate system is located.

M =

We shall write kopt(2,y) = |h(z,y)|? and we call it the point spread function
of the optical system. In case of a circular aperture of diameter D and incoherent
light source centered around a wavelength A, the point spread function K, is

given by
. 2
J] (7T71—0)
kopt(m) = 27('—7— (15)

To
where J;(r) is the Bessel function of first class and order 1, r is the radial distance
computed in the image plane and '

Ad;
o= (1.6)

If the aperture is a square [—a,a] x [—b, b], then k,,; is given by
sin® (w;—:}) sin® <7r1”—0"’2)

2 2
1 T2
(ﬂ' o1 ) (7!‘ To2 )

(1.7)

kopt(l'lax‘z) —

Ad;
25 °

_ M
where zg; = Sar To2 =
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The point spread function of the joint optical-captor system is the convolution
of the point spread functions of both systems, i.e.,

k= kopt * kdet-

In terms of its Fourier transforms, the modulated transforms of the optical system

and detector, we have
MTF = MTF,p, MT V.

Noise. We shall describe the typical noise in case of a CCD array. Light is consti-
tuted by photons (quanta of light) and those photons are counted by the detector.
Typically, the sensor registers light intensity by transforming the number of pho-
tons which arrive to it into an electric charge, counting the electrons which the
photons take out of the atoms. This is a process of a quantum nature and there-
fore there are random fluctuations in the number of photons and photoelectrons
on the photoactive surface of the detector. To this source of noise we have to
add the thermal fluctuations of the circuits that acquire and process the signal
from the detector’s photoactive surface. This random thermal noise is usually de-
scribed by a zero-mean white Gaussian process. The photoelectric fluctuations are
more complex to describe: for low light levels, photoelectric emission is governed
by Bose Einstein statistics, which can be approximated by a Poisson distribution
whose standard deviation is equal to the square root of the mean; for high light
levels, the number of photoelectrons emitted (which follows a Poisson distribu-
tion) can be approximated by a Gaussian distribution which, being the limit of a
Poisson process, inherits the relation between its standard deviation and its mean
[22]. In a first approximation this noise is considered as spatially uncorrelated with
a uniform power spectrum, thus a white noise. Finally, both sources of noise are
assumed to be independent.

Taken together, both sources of noise are approximated by a Gaussian white
noise, which is represented in the basic equation (1.1) by the noise term n. The
average signal to noise ratio, called the SNR, can be estimated by the quotient
between the signals average and the square root of the variance of the signal.

The detailed description of the noise requires a knowledge of the precise
system of image acquisition. More details in the case of satellite images can be
found in [172] and references therein.

The processes of image transmission and register generate other types of
noise like the loss of some values or a change of the intensity value proportional to
it. This could be modeled with a term 7 in the equation ug = Q{II(k xu) + n} -7.

1.1.2 Image Restoration

We suppose that our image (or data) uy is a function defined on a bounded
and piecewise smooth open set D of RV — typically a rectangle in R2. From



