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PREFACE

This book is designed to teach the techniques of calculus as they are applied to
problems in business and biology, as well as the skills required to use these techniques.
Throughout the text, we introduce calculus concepts through real-world examples to
achieve these goals.

In our writing, we have been guided by two interrelated principles: (1) We do not
serve the student well if all we teach is how to manipulate the mathematical symbols of
calculus, and (2) to understand the usefulness of calculus as a problem-solving tool in
business and biology, it is necessary to become fluent in the language of calculus.

Thus, we balance the motivational, descriptive, and conceptual aspects of our pre-
sentation with the manipulative drill work required to achieve a reasonable level of
mastery of the material.

* New concepts are introduced by means of motivational real-world examples that
demonstrate the need for the new techniques.

* Clear, detailed explanations of the material follow their introduction.

* Several worked examples of a new technique or concept are supplied, ranging from
basic to more advanced.

* A large supply of exercises gives the student the opportunity to apply the new
knowledge. Included are problems testing comprehension of the ideas and applica-
tions as well as the necessary, but not sufficient, technical drill exercises.

» Solutions to odd-numbered exercises appear at the back of the text. Solutions to
even-numbered exercises and sample tests with solutions are contained in the
accompanying instructor’s manual.

* Each chapter ends with a summary reviewing the key points and a chapter test with
answers.

This book is intended for a one-semester or two-quarter course; however, substantial
additional material is included. At the University of Michigan—Dearborn, where the
text has been used in a preliminary edition, Chapters 1 to 5 and some supplementary
material on linear programming are covered in one semester. Chapters 6 and 7 are
covered in the first half of a second semester, followed by supplementary material on
discrete and continuous probability and statistics.

A one-semester course for students with a solid precalculus foundation might start at
Chapter 2 and cover selected sections of Chapters 6 and 7. Alternatively, a two-
semester course for students with only a second year of high school algebra as
prerequisite, might cover the entire text with the addition of material on finite mathe-
matics, precalculus, or other suitable topics.
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44 ALGEBRA REVIEW

We present the essential elements of algebraic manipulations here for review. Consider
first the rules governing the use of exponents. Expressions of the form x2, 10'0, y=!,
(x2 + 1)12, cm? all involve exponents. In the expression x2 we call x the base and 2
the exponent. The exponent is a shorthand form for indicating the multiplication x - x,
Some multiplication results give us general rules for handling exponents. For example,

2 =@- - x-x-x)=x

X XX _
X x

P =) &N D= x % x-x)=x°

x3 +x2 = x = x!

(xy)? = (xy) - (xy) = x% - y?
The general rules formulated for all numbers m and n are as follows.

Rules
1. xm-xn = ymtn
2, xm = x#+0
3. (@mr = xmn
4. (ot = xmy"
5. x0=1 x#0
To interpret (2) when m < n, study the following example:

X2 x-x

x2 1
x3 x-x-x x

Rule (2) led us to conclude

x2

X 2-3 — -1
x x
x3

We use this fact as a basis for defining negative exponents. By agreement we let

1 . | .
x~! = 5 and, in general, x " = e for x # 0. Letting n = —m, we also have

I EXAMPLE 1  Simplify

25.x—3.x4

2-1. (x3)2
Solution:
25 . x=3 . x4 95 x—3+4 . X!
2-T-(x3)2  2-1 372 = 227! )';
26 64
=26 . 41 -6 — 96 ,—5 - = _ b4
2 X 2% x e P .



In order to solve the equation x3 = 8, we take cube roots of both sides, getting x =
V'8 = 2. However, rule (3) suggests that if we raise both sides of the equation x3 = 8
to the power §, we obtain (x3)!3 = 8!/3, or x3'1/3 = 813, and finally x = 813, A
reasonable interpretation for 8!/3 is then V8 = 2.

Definition I x''7 = ¥/x, for g a positive integer, x = 0.
This idea allows us to extend the exponent concept to other fractional exponents.

Definition 2 x7'1 = (xa)p = (xP)'a, for p and g integers, ¢ positive.

B EXAMPLE 2
6423 = (64132 = 42 = 16 n

I EXAMPLE 3

1 1
y172)s = x10,572 [ ]
By common agreement V4 = +2 only, even though (—2)2 = 4,
'I\‘h}negative square root of 4 is written —V/4; if we desire both we will write
* V4.

We apply the same rules (1) to (4) to expressions involving irrational numbers as
exponents, for example, x™, 2VZ,

(x¥y) =52 = ((x*y)2)~5 = (x2yl12)=5 =

B EXAMPLE 4
aV2b

" (be)?™ = aV2-N1p=3 . pameem — HVI- DR —3) 2w B

B EXAMPLE 5 Solve the equation
x4+ -z =1
Solution: Raise both sides to the power —2 and get
[0 + D122 = ()2

1

¥+ l= g =
@ = °

Then x3 = 8,s0x = 813 = 2.

Notice that no rule exists that allows (x3 + D=V2 = (x3)-12 4 1-12
This is not a legitimate algebraic operation. Only when n = +1 is (x + " =
X" + y™ true. We can test this observation further: \/4 + § = 4+ 512=9112=3
however, 412 + 512 = 2 + V54436 # 3. And 2 + 4)~! = /2 + 4) = }
however, 27! + 4-1 =4 4+ 1 =8 2 1

When we multiply expressions of the form (x + y)?, or more generally a product

M

»

3

11 ALGEBRA
REVIEW
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(a + b) (c + d), we use the fact that multiplication distributes over addition to
compute the product:

(a+by-(c+dy=a-(c+d)+b-{c+d)=ac+ ad + bc + bd
In particular

(x+ YR =x24+xy+yx+y2=2x2+ 2xy + 2
y ¥

I EXAMPLE 6 Multiply and simplify the following:

(@ x2 + &2 —y
® Ra+3N@—a'!+1)

Solution:"

@E2+NE?—y=xx2+x(=y)+y-xT -y y=xt—y>2
® Ra+3N@—-a't+1)=2a-a%2—-—2a-~a!
+2a-1+3-a>—-3-a'+3-1

2a3—2+2a+3a2—%+3

3
— 3 2 + — =
203 + 342 + 2a 1 a .

It is also useful to factor expressions.

B EXAMPLE 7 Factor x2 — 2x — 3.

Solution: We want to find expressions of the form (x + a) and (x + b} which, when
multiplied together, give x> — 2x — 3. Since (x + a)(x + b) = x2 + (a + b)x + ab,
the x2 terms match. We now try to select @ and b, so that ¢ + b = —2 and
ab = —3. Weseethata = 1, b = —3 works and the correct factorization is

2 -2x -3 =(x+Dx~-13)
Multiplication checks our work. ]

B EXAMPLE 8 Factor x3 + 7x2 + 10x.

Solution: First we note that x is a factor common to all three terms. Thus x3 + 7x2
+ 10x = x(x2 + 7x + 10). We now factor the quadratic so that x2 + 7x + 10 =
(x + 2) - (x + 5) and therefore

x3 4+ 7x2 + 10x = x(x + 2)(x + 5) ]
A very common factorization worth remembering is the difference of two squares

2 =y2=(x+ykx-~-y

B EXAMPLE 9

(a) Factor x2 — 25,
(b) Factor (x + y)2 — 22,



Solution:
@x2-299=x+%9x—23
b)) (x+y2—22=[x+y +z][(x +y ~ 2] [ |

Another method of factoring makes use of the quadratic formula, which states:
ax? + bx + ¢ = 0 has solutions (roots)

—b * Vb2 — 4ac
2a

whenever b2 — 4ac = 0. (If b2 — 4ac < 0, there are no real roots.)
Returning to Example 7, we see that the roots of

v = —(=2) = V(=22 — 4(1)(-3) _
2(1)

x2—-2x—-3=90 are 3, — 1

Having the roots, we may construct the factors (x — 3) and [x — (= 1)] = (x + 1).
This is an application of a general result called the Fundamental Theorem of Algebra,
which states:

The expression ¢, x* + ¢, _ x"~! + - -+ + ¢,x + ¢, has the factorization
¢, x =r)(x—ry) ... —r,), where the numbersr,, r,, . . . , r, are then
roots of the equation ¢, x* + ¢, (x"" ! + - -+ + ¢cx + ¢ = 0.

B EXAMPLE 10 Factor 2x2 — 3x + 1.

Solution: The roots of 2x2 — 3x + 1 = O are

+ V(=32 =42
L3 V(IR 423

* 1 1
22 4

:1’5

by the quadratic formula. By the Fundamental Theorem of Algebra the factorization is

2x2 =3+ 1 =2x—-HE - D =Qx - D(x — 1) |

B EXAMPLE M1 Factor x> — 2x2 — 5x + 6.

Solution: We must guess a root of x> — 2x2 — 5x + 6 = 0. Clearly x = Oisnota
root. We try x = 1 and find it is a root, since | — 2 — 5 + 6 = 0. Therefore one of
the factors is (x — 1). Instead of trying to guess the other roots, we divide x3 — 2x2 —
5« + 6 by (x — 1).

x2 —x—-6
x— 13— 22 - 5x + 6

33— x2
—x2 — 5%
—x2 + x

— 6x + 6
—6x + 6
0

)

14 ALGEBRA
REVIEW
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Therefore x* — 2x2 — 5x + 6 = (x — 1) (x2 — x — 6), and factoring the quadratic
gives (x — 1) (x — 3) (x + 2) as the factorization.

Often we can mathematically express a relationship between variables. For example,
if the total cost, C, of golf balls is directly proportional to the number purchased, x, we
can express this as C = kx for some number £.

Definition 3 The variable y is directly proportional to the variable x if there is
some number k such that y = kx.

To find k& we use some specific information relating cost and number, such as one
dozen golf balls cost $8.

B EXAMPLE 12 The amount of money received as dividends from a company is
directly proportional to the number of shares of stock owned. If Mary owns 100 shares
and receives a dividend of $35, how much will Tom receive if he owns 600 shares?
How many shares does Linda own if she receives a dividend of $7?

Solution: Let d denote the amount of the dividend and let s denote the number of
shares. The fact that the amount of the dividend is directly proportional to the number
of shares means that there is a constant k such that d = ks. Since, in Mary’s case, d =
$35 when s = 100 shares, we find

$35 = k - (100 shares)
or
k = $0.35/share

Thus Tom receives

d = ($0.35/share) - (600 shares)
= $210

To find the number of shares Linda owns we set
$7 = ($0.35/share) - s
and solving, get s = 20 shares. [ |

I EXAMPLE 13 The rate at which chemical A is converted into chemical B in a
reaction is directly proportional to the amount of chemical A present. Let r (g/min) be
the rate at which A is converted to B and let a (g) be the amount of A present. The
statement that r is directly proportional to a allows us to write r = ka for some constant
k. If A is being converted to B at the rate of 2 g/min when there are 40 g of A present, at
what rate is A being converted to B when there are 20 g of A present?

Solution: Since r = 2 g/min whena = 40 g, we find 2 g/min = & - 40 g so thatk =
Z5/min. Then the rate of conversion when there are 20 g of A present is given byr =
(Fo/min) (20 g) = 1 g/min.



Note that halving the number of grams of A present (from 40 to 20) results in halving
the conversion rate » (from 2 to 1). Analogously, tripling the amount of A present
would result in tripling the conversion rate. This relationship characterizes direct
proportionality.

In marketing, sales volume is often increased if we decrease selling price. If x
denotes the number of items to be sold and p the price per item, then p = D(x) is called
a demand function, giving the relationship between the number sold and the price. In
general, we expect p to decrease as x increases. Suppose p = D(x) = 20,000/x. Then,
in order to sell 10,000 items, we set the price at $2 each (20,000/10,000); in order to
sell 50,000 items we must reduce the price to $0.40 each.

A five-fold increase in sales results when we reduce the price by a factor of 5; that is,
since 50,000 = 5 X 10,000, the price must be $0.40 = & x $2.

We say that variables x and p are inversely proportional. In general we have the
following definition.

Definition4 The variable y is inversely proportional to the variable x if there is
some number k£ such that y = k/x.

In our problem & = 20,000.

Saying that y is inversely proportional to x is the same as saying that y is directly
proportional to 1/x.

When two variables are inversely proportional, their product is a constant, that is,
xy = k. Therefore, as x gets bigger y must get smaller.

M EXAMPLE 14 The equation PV = KnT relates the pressure P, volume V, and
temperature 7 of a gas to the number of molecules n of the gas present where X is a
constant. Solving for P, we find P = (KnT)/V, from which we conclude that P is
directly proportional to # and T and inversely proportional to V. With n and V fixed,
doubling the temperature of the gas doubles its pressure. With n and T fixed, doubling
the volume halves the pressure. With n fixed, what happens to the pressure if we
double both the temperature and the volume? It remains the same. [ ]

Exercise Set 1.1

1.1.1. Using rules of exponents (1) to (4), prove rule (5). Are there any restrictions
on the values of x for which (5) holds true?

In Exercises 1.1.2 to 1.1.9, simplify the expression.

x7 y (3x)2 - (2},)*3
1.1.2. P 1.1.6. S
LL3. @ y)? L17. (VO)© = x-2,
g Lis, G079
1.1.4. V- Vx. .1.8. o
24172y — 1/4
1.1.5. Vx + 1(x + 1)y752, 1.1.9. _%Ly_l_

24 (Vxy)®

/

14 ALGEBRA
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In Exercises 1.1.10 to 1.1.15, write as a single fraction.

1.1.10.

1.1.11.
1.1.12.

1y ll’. LL13. a3+ 1.
a X! y— !
1 i 1.L14. F— + 21—
; + y—-. y X
—1 —1
a2 + p—172, 1.1.15. 2 b

a+tb atb

In Exercises 1.1.16 to 1.1.23, multiply and collect like terms.

1.1.16.
1.1.17.

1.1.18.
1.1.19.
1.1.20.
1.1.21.
1.1.22.
1.1.23.

(a + b+ b2) (a — b?).
1 |
(_ + '}7) (x — y)

x
(2 +3x+ Vx)(x = Vx + 1).

(Bx + 2y) (x — Sy).
Vx—2+Vx+1D(Vx—-2-Vx+ ).
(x2 — x + 1) (2 + x + 2).

(Bx2 + 5x) (x2 — 2x + D).

(Vx — Vy) (Vx + Vy + Vx + y).

In Exercises 1.1.24 to 1.1.34, factor.

1.1.24.
1.1.25.
1.1.26.
1.1.27.

1.1.28.

x2 — 4x — 5. 1.1.29. x2 + 8x + 12.

x2 + 4x + 3. 1.1.30. x* — y*,

2x2 + 5x — 12. 1.1.31. x3 + 4x2 — x — 4.
ré — 3r2 — 4. 1.1.32. x3 — 6x2 + 8x.
(Hine: let x = r?). 1.1.33. x3 + 6x2 + 9x + 4.
2 = 2Vy + y. 1134, x4 — 2x3 + 2x — 1.

In Exercises 1.1.35 to 1.1.41, solve using the quadratic formula.

1.1.35.
1.1.36.

1.1.37.
1.1.38.
1.1.42.

x2 4+ 3x— 10 =0. 1.1.39. x2 +3x+ 1 =0.
s X 1 _ 1.1.40. 2x%? — 8 + 3 = 0.
X ) + 16 0.

1141 =2 540
24+ x—1=0. 2—x+ = (.

3x2 —2x — 1 = 0.
A bank compounds interest semiannually and wishes to select an interest rate

that will be equivalent to 6 percent simple interest (applied at the end of the year). If it
selects interest rate r, then after one year an initial deposit A will have grownto A[1 +
(r/2)]?. At 6 percent simple interest, A would have grown to A(1 + 0.06) after one
year. Find r. (We say that the interest rate » compounded semiannually has an effective
annual yield of 6 percent.)

1.1.43.

Find the total revenue for the example leading to Definition 4, where revenue

is the price per item times the number of items sold. In what ways is the demand
function in that example unrealistic?



