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PREFACE.

Tap solution of the general quadratic equation was known as
early as the ninth century; that of the general eubic and quartic
equations was discovered in the sixteenth century. During the suc-
ceeding two centuries many unsuccessful attempts were made to
solve the general equations of the fifth and higher degrees. 1In 1770
Lagrange analyzed the methods of his predecessors and traced all
their results to one principle, that of rational resolvents, and proved
that the general quintic equation cannot be solved by rational re-
solvents. The impossibility of the algebraic solution of the general
equation of degree n (n>>4), whether by rational or irrational resolv-
ents, was then proved by Abel, Wantzel, and Galois. Out of these
algebraic investigations grew the theory of substitutions and groups.
The first systematic study of substitutions was made by Cauchy
(Journal de Uécole polytechnique, 1815).

The subject is here presented in the historical order of its devel-
opment. The First Part (pp. 1-41) is devoted to the Lagrange-
Cauchy-Abel theory of general algebraic equations. The Second
Part (pp. 42-98) is devoted to Galois’ theory of algebraic equations,
whether with arbitrary or special coefficients. The aim has been
to make the presentation strictly elementary, with practically no
dependence upon any branch of mathematics beyond elementary
algebra. There occur numerous illustrative examples, as well as
sets of elementary exercises.

In the preparation of this book, the author has consulted, in

addition to various articles in the journals, the following treatises:
iii
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Lagrange, Réflexions sur la résolution algébrique des équations;
Jordan, Traité des substitutions et des équations algébriques; Serret,

Cours d’Algébre supérieure; Netto-Cole, Theory of Substitutions and -

is Applications to Algebra; Weber, Lehrbuch der Algebra; Burn-
side, The Theory of Groups Pierpont, Galois’ Theory of Algebraic
Equalions, Annals of Math., 2d ser., vols. 1 and 2; Bolza, On the
Theory of Substitution-Groups and its Applications to Algebraic
Equations, Amer. Journ. Math., vol. XIII.

The author takes this opportunity to express his indebtedness
to the following lecturers whose courses in group theory he has at-
tended: Oscar Bolza in 1894, E. H. Moore in 1885, Sophus Lie in
1896, Camille Jordan in 1897.

But, of all the sources, the lectures and publications of Professor
Bolza have been of the greatest aid to the author. In particular,
the examples (§ 65) of the group of an equation have beer borrowed
with his permission from his lectures. )

The present elementary presentation of the theory is the out-
come of lectures delivered by the author in 1897 at the University
of California, in 1899 at the University of Texas, and twice in 1902
at the University of Chicago.

Cricaco, August, 1902
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FIRST PART.

THE LAGRANGE-ABEL-CAUCHY THECRY OF
GENERAL ALGEBRAIC EQUATIONS.

CHAPTER 1.

SOLUTION OF THE GENERAL QUADRATIC, CUBIC, AND QUARTIC
EQUATIONS. LAGRANGE’S THEOREM#* ON THE IRRATION-
ALITIES ENTERING THE ROOTS.

1. Quadratic equation. The roots of z*+pr+¢=0 are
=H—p+VP'—4), z=H-p-Vp'~dg.
By addition, ‘subtraction, and mul’clphca.tlon, we get
Z+T,= -P 31_32=V52‘49» T, Ty =g.
Hence the irrationality v/ p*—4q, which occurs in the expressions
for the roots, is rationally expressible in terms of the roots, being
equal to z,—z,. Unlike the last function, the functions z,+z,
and z,x, are symmetric in the roots and are rational functions of

the coefficients.
2. Cubic equation. The general cubic equation may be written

(1) 22—’ + ez —cy=0.
Setting z=y+}c,, the equation (1) takes the simpler form
(2) y*+py+9=0,

* Réflexions sur la résolution algébrigque des équations, (Euvres de Lagrange,
Paris, 1869, vol.'3; first printed by the Berlin Academy, 1770-71




2 GENERAL QUADRATIC, CUBIC, AND QUARTIC.  [Cm.I

if we make use of the abbreviations

(€) p=c—1¢} g=—ctice—he’.

The cubic (2), lacking the square of the unknown quantity, is
called the reduced cubic equation. When it is solved, the roots
of (1) are found by the relation z=y+3c,.

The cubic (2) was first solved by Scipio Ferreo before 1505.
The solution was rediscovered by Tartaglia and imparted to
Cardan under promises of secrecy. But Cardan broke his promises
and published the rules in 1545 in his Ars Magna, so that the
formule bear the name of Cardan. The following method of
deriving them is essentially that given by Hudde in 1650. By
the transformation

=z—L
(4) f 2 33’
the cubic (2) becomes 2°— 2;)2, +¢=0, whence
s 3_ p_a=
() 2°4-qz 57 0.

Solving the latter as a quadratic equation for 22, we get
#=—4gtVE, R=ig'+ip.
Denote a definite one of the cube roots of —3g+-VE by
i/ ~1+VR.
The other two cube roots are then
w¥/~1+VE, ¥ ~w+VE,

where w is an imaginary cube root of unity found as follows. The
- three cube roots of unity are the roots cf the equation

r—1=0, or (r—-1({F*+r+1)=0.
The roots of 147+ 1=0are —}+4V —3=wand —}— IV —3=u?,
Then
(6) W*+w+1=0 o®=1.,
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In view of the relation
(—4g+VR)(—3g—VR)=1¢—B= —p",
a particular cube root Vm may be chosen so that
Y TH+VER Y — -V E=—ip.
o 0¥/ “3tVE - Y ~g-VE=—ip,
WY/ ~3+VE - 0¥/ ~-VE = —ip.

Hence the six roots of equation (5) may be separated into pairs
in such a way that the product of two in any pair is —3p. The

root paired with z is therefore —-3%, and their sum z-—% is, in

view of (4), a root y of the ecubic (2). In particular, the two roots
of a peir lead to the same value of y, so that the siz roots of (5)
lead to only three roots of the cubic, thereby explaining an apparent
difficulty. Since the sum of tne two roots of any pair of roots
of (5) leads to a root of the cubic (2), we obtain Cardan’s formule
for the roots y,, y,, ys of (2):

y,=%/ g +VR+3/ —4—VE,
) vy=w —3g+VER+w* ¥/ —4g—VR,
y=0*Y —3g+VE+w Y ~4—VR.

Multiplying these expressions by 1, «?, » and adding, we get,
by (6),

Jrre——————
4 “i’q"f‘\/R“‘}(yx'*'w,yz'{'w%)-
Using the multipliers 1, @, w? we get, similarly,

Y —4—VR=§y oy +wyy).
Cubing these two expressions and subtracting the results, we get
VE=7e{(Us+ oy wy)’~ (4 +wy o'y’

= -%_3-(% — Y)W — %) Ys— %)
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upon applying the Factor Theorem and the identity w—w?=4"—3.
Hence all the irrationalities occurring in the roots (7) are rationally
expressible 1n terms of the roots, a result first shown by Lagrange.
The function
(41— %" (%:— 1) (s~ 1) = —27¢*— 4p°®
is called the discriminant of the cubie (2).
The roots of the general cubic (1) are

=ptia, Z=yptie, Z=yt+ic.
L=%=U—Ys ZT,—Ty3=Y—Ysy T3—T,=Y3—Y,,
B (=) (@ —2) (T — ) = (¥, — ¥a) Y —Ys) (Ys—¥,)

18 AT
=:/-j._§‘\/l—z——6‘\/—3‘\/*q e

EXERCISES.

1. Show that 2, + 0z, + wZs =y, + W%, + Wy, T, + @T, + W'z =y, + WYy + W,

2. The cubic (2) has one real root and two imaginary roots if £>0; three
real roots, two of which are equal, if R=0; three real and distinct roots if
R <0 (the so-called irreducible case).

3. Show that vhe discriminant (z;—,)3(z;—x;)*(2,—x,)? of the cubic (1)
equals

€,%c;" +18¢,6,0, — 4" —4e, %, —27cy%
Hint: Use formula (8) in connection with (3).

4. Show that the nine expressions \3/ —}q+\/l—?,+\3/ —~3¢—V'R, where
all combinations of the cube roots are taken, are the roots of the cubics
Y'+py+g=0, P+opy+g=0, y'+w'py+q¢=0.

5. Show that y,+4,+4,=0, YW +yts+¥Ys=p, YWYs=—0¢.
6 Show that )+, +2y=c,, 2,2,+2,2;+2,2y=c;, Z,T,%3=¢, using Ex. 5.
How may these results be derived directly from equation (1)?

3. Aside from the factor 4, the roots of the sextic (5) are
$=2z,+wz, + 'z, b=z, + 0z, t+ 0z,
=0’ =2, t s+ 0, $i=0 =+ wr,+ w’zy,
hy=wh =Ttz +o't, =0 =2+ 0+,
These functions differ only in the permutations of z,, z;, z,. As
there are just six permutations of three letters, these functions
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give all that can be obtained from ¢, by permuting z,, %,, ;. For
this reason, ¢, is called a siz-valued function.

Lagrange’s & priori solution of ‘the general cubic (1) consists
in determining these six functions ¢y, ..., ¢s directly. They are
the roots of the sextic equation (t—¢,)...(t—¢g)=0, whose
coefficients are symmetric functions of ¢y, . . . , ¢ and consequently
symmetric functions of &, «,, z; and hence * are rationally expressible
in terms of ¢, &, ¢ Since ¢,=w,, P;=wy,, ete., we have by (6)

(- ¢1)(t "‘Pz)(t" Sba) =t 51’1’:
(t—¢o) (t— ‘/‘5)0—‘/’0) = ta"S[’AS'

Hence the resolvent sextic becomes
9 1= ($.2+ O+ ¢, =0.
But dd =2+ z, 2+ (w+w ) (24, + Ty + To%s)
= (2, + 2,4 %3)* — 3(2, 8, + 2,25+ T,%5) = €,> — 30y,
in view of Ex. 6, page 4. Also, ¢,*+¢* equals

2z, 2+ z,%) — 3(x, 2z, + T, + T, *Ty+ T2y’ + %, + z,25") + 122,2,7,
=3(z,*+z,°+ xy*) — (xy+ 2.+ Tg)*+ 182, 2525
=2¢,®—9¢,6,+27¢,.

Hence equation (9) becomes
18— (2¢,2 —9¢,c, + 27c)t* + (¢, — 36,)*=0.

Solving it as a quadratic equation for %, we obtain tW(; roots @
and ¢, and then obtain

= 'é/b-’ ¢4=W-

Here ¥/8 may be chosen to be an arbitrary one of the cube roots
of 4, but /% is then that definite cube root of 6 for which

(10) R/ G-NG =c2—3c,
We have therefore the following knowa expressions:

z, + 0T, + w'Ty= V8, x,+w2x2+wx,,=’€/3—’, T+ Ty Ty=Cye.

* The fundamental theorem on symmetric functions is proved in the
Appendix.
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Multiplying them by 1,1, 1; then by «?, w, 1; and finally by w, 0?,1;
and adding the resulting equations in each case, we get

z,= e, +¥ O +VE),
(11) =}, + 0¥ 0+ 0 ),
zy=3(c,+ 0 YO+ V).
4. Quartic equation. The general equation of degree four,
(12) 2+ ax®+br?+cx+d=0,

may be written in the form

(a*+ }az)*=(}a’ - b)a’—cz—d.
With Ferrari, we add (22+3ax)y+}y? to each member. Then
(13)  (F*+iez+y)*=(1a—b+y)2’ + (ey—c)z+ 1y’ —d

We seek a value y, of y such that the second member of (13) shall
be a perfect square. Set

(14) . a*—4b+4y, =12
The condition for & perfect square requires that

(15  Pr+(Gay—or+iy—d= (m+ day, —c ) _

Yay—c\*__(bay —c)z

. 2 _g— {220 - 1
o et B o
Hence y, must be a root of the cubic, called the resolvent,
(16) y*—by?+ (ac—4d)y—a*d+ 4bd—c*=

In view of (15), equation (13) leads to the two quadratic
equations

@17 2+ (3a— i)z + 4y, — (Gay,—)/i=0,

(18) 22+ (3a+3t)x+ 3y, + (3ay, —c) /t=0.

Let z, and z, be the roots of (*7), z; and 2, the roots of (18). Then
T+ 2= —da+¥, zx,=3%y,—(ay, -0/,
Tytz=—a—3, zz =4y +(day,—)/L.
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By addition and subtraction, we get
(19) 22— 3=1, L%+ 0%=Y,.

Ta solving (17) and (18), two radicals are introduced, one equal
to x,~z, and the other equal to z;—z, (see § 1). Hence all the
irrationalities entering the expressions for the roots of the general
quartic are rational functions of its roots.

If, instead of y,, another root of the rasolvent cubic (16) be
employed, quadratic equations different from (17) and (18) are
obtained, such, however, that their four roots are z,, z,, z,, z,,
but paired differently. It is therefore natural to expect that the
three roots of (16) are

(20) Y =TT TTy, Yo=D Tyt Ty, Yg=L%+ Tyl

It is shown in the next section that this inference is correct.

5. Without having recourse to Ferrari’s device, the two quad-
ratic equations whose roots are tho four roots of the general quartio
equation (12) may be obtained by an & priori study of the rational
functions z,x,+ 2y, and z,+z,—z,—z,=t. The three quantities
(20) aro the yoots of (—y,)(y—y,)(y—¥s)=0, or

(1) ¥V — @+ 1+ 98+ ¥ids + YYs VY)Y — YiYays=0.
Its coefficients may be expressed * as rational functions of a, b, ¢, d:

Yttt U= 5T+ 27, + 22+ 27, + 2,2, + 22, =D,
Yila+Yls+ Y= — 422,757,
(@ 2y 23+ 2 (20T + A BT+ T
=ac—4d,
YiYsYs= (T, 25+ 2, 0%, + 2,257+ Z,7,2,)?
+ 2,227, { (T, + T3+ Ty + ) — HZ, 2, + 2,25+ +257,) )
=24 d(a?—4b).

* This is due to the fact (shown in § 29 Ex. 2, and § 30) that any per-
mutation of 2, 2,, %, , merely permutes ¥,, ¥,, ¥s, S0 that any symmetric
function of y,, ¥,, ¥; is a symmetric function of z,, 2,, 7;, 2, and hence rationally
expressible in terms of g, b, ¢, d.
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Hence equation (21) is identical with the resolvent (16). Next,

B=(2,+2,+2,+2)"—4(z, + 2,) (2 + )
Zal—4(xx, Tt ... Fax) 4w, 4z,
—4b+4y,.

Again, z, +x2+x,+x4= —a. Hence
zx+xz i(it—a), z,tz,=¥-t—a).
To find z,z, and z,x,, we note that their sum is y,, while

—i~ t—a
—c=x1xz(x,+:c‘)+x_3x,(x,+xz)=rl:c2< 5 >+ e 4( 5 )

- 2@, =(c—%ay, +3ty)/t, zx,=(—c+lay,+¥ty,)/t.

Hence 2, and =, are the roots of (17), 2, and x, are the roots of (18).

6. Lagrange’s & priors solution of the quartic (12) is quite
similar to the preceding. A root y,—==zx,+z,z, of the cubic (16)
is first obtained. Then FT=2 and z,z,=2, are the roots of

—y2+d ='0.
Then z,+z, ana z,+ z, are found from the relations
(@ +2) +(23+2) = —aq,
2,(2,+1,) + 2,(23+ T,) = 2T T, + LT Ty + 2,285+ 2, 2,2, = —C.

i —az;+c¢
S Tyt x,= , Tytz,= s
2,—2, Z, -2

Hence z, and z, are given by a quadratic, as also z, and z,.
7. In solving the auxiliary cubic (16), the first irrationality
entering (see § 2) is
4= (Y~ Y2) (%2~ Ys) Yy —¥a)-
‘But y;"‘yz=(zl—x4)(x2'—za))
—%=(2—5) (% —%), Y—Ys=(2,—T)L—2), .
in view of (20). Hence
(22) A= (2, — 1) (2, — 2) (3, — ) (T3 — T3) (T, — 2) (T, —2)-
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By § 2, the reduced form of (16) is 3*+Py+Q=0, where

{P-ac-‘ld—ib’-,
Q= —a%d+jabc+ §bd—c*— b

Applying (8), with a change of sign, we get

(23)

(24) 4=6V =3 ViIQ+ P



"CHAPTER 1II.
SUBSTITUTIONS; RATIONAL FUNCTIONS.

8. The operation which replaces z, by z.,, z, by Ty 2yby 2, . .0,
Zy by z., where @, §,..., v form a permutation of 1, 2,..., n,
is called a substitution on z,, z,, z,,..., 2, It is usually des
ignated

(xl Ty Ly e a:,.).
Ta Ty Tp ... Ty

But the order of the columns is immaterial; the substitution may
also be written

(z, B, % .. z,,) .- (:r:,, Y % % ...>,__.
Tp Ta Ty ... Ty’ s e Ty Ty ...

The substitution which leaves every letter unaltered,
(zl T Ty ... mn>,
Ty B Ty ooe. By,

is called the identical substitution and is designated I.

9. THEOREM. The number of distinct substitutions on n letlers
nl=nn—-1)...3-2-1,

For, to every permutation of the n letters there corresponds &
substitution.

Exampre. The 31=6 substitutions on n =3 letters are:

I= (5 5 %) a_(zxzzaa, b_(zxx,za

Ty Ty T, T3 T3 T Ty Ty Ty)°
o (aa z, xa) P (zx L X Y- (zl qu.),
Zy T3 %) ' Ts T3 2,/ Z Ty Ty

Applying these substitutions to the function ¢ =z, +wz,+w'z;, we obtain
the following six distinet functions (cf. § 3):
r=s+ut, +0'n=g, fo=2,+ 0T +0'% =0, =Tyt w2+ 0’z =0,

Yo=2\ +wiy+w's, Ya=2y+ 0z, + 0’0, =we, o=y + 0T+ 0 =wg,
10
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Applying them to the fllmction b= (1 —2,) (B, — 23) (T4 — ), We obtain
bi=dumtrmd,  Gemdi=de=—
Hence ¢ remains unaltered by 1, ¢, b, but is changed by ¢, d, e.

10. Product. Apply first a substitution § and afterwards a
substitution ¢, where

s=<.r1 W5 wes :r:,,)) t=<x", Zg . :n)l
Ta Ty oo Ty TS Ty .. T
The resulting permutation Za', Ty, . . ., T+ cal be obtained directly

from the original permutation Z,, &y, . .., Tn by applying a single
substitution, namely,
— (:c, x,.)'
Ly’ $ﬁ’ cee Xy
We say that u is the product of s by ¢ and write u=st.

Similarly, stv denotes the substitution w which arises by apply-
ing first s, then ¢ and finally », so that stv=uv="w. The order
of applying the factors is from left to right.*

Exampins. For the substitutions on three letters (§ 9),

‘ ab=ba=I, ac=d, cu=e, ad=¢e, da=c,
aa=b, bb=a, abc=Ic=c, aca=da=c.

Applying the substitution a to the function ¢, we get da; applymmg the
substitution ¢ to ¢a, we get ¢a. Hence ¢ac=¢u. Likewise ¢ab=¢1=9¢,
Ypa=9. . :

11. Multiplication of substitutions is not commautative in
general.

Thus, in the preceding example, ac#ca, ads#da. But ab=ba,
g0 that @ and b are said to be commutative.

12. Multiplication of substitutions is associative: st-v=s-{v.

Let s, t, and their product st=wu have the notations of § 10. If

Tor Tf - T Ta Ty oo LTv
= tv= (4 .
v (x“u Ty .o z,)’ then tv Fa Ty .- AN

T ... T
c. stov=uv= T, T In” = Ty T, ZTn a’ v, —s.tv.
Td'' Ly’ eee Ty I,,-'Bp o K3 Ta” oo L

Examrre. For 3 letters, ac-a=da=c, a-ca=ae=c.

=This is the modern use. The inverse order ts, vts was used by Cayley
and Serret.
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15 Powers.- We write ¢? for ss, ® for sss, etc. Then
(25) gMgne=gmtn (m and n positive integers).
For, by the associntive law smsn=gm.sgr~t=gm+ign—l=

14. Period. Since there is only a finite number n! of d.‘stmct
gubstitutions on # letters, some of the powers

3, 8%, &%, ... adnfinitum
must be equal, say s™=sm+n, where m and n are positive integers.
Then sm=smg®, in view of (25). Hence s* leaves unaltered each
of the n letters, so that s»=Jl.
The least positive integer o such that s*=1 is called the period
of s. Tt follows that
(26) s, 82, ...87, &'=]

are all distinet; while s?+!, s°+2, . ., s%—1 §% gare repetitions
of the substitutions (26). Hence the first ¢ powers are repeated
periodically in the infinite series of powers.
ExamprLes. From the example in § 1D, we get
a’=b, a’=ala=ba=J, whenceais of period3;
bi—g, bi--b=ab=J, whenceb is of period 3;

¢, d, e are of period 2; I is of period 1.

16. Inverse sabstitution. To every substitution s there corre-
sponds one and only one substitution &' such that ss’=/. If
s____(z‘, L, - 2,‘>’ t-hen s,x(& x‘ eee Tv :

T, Ty ... T T, Xy ... Zy
Evidentiy 5's=1. We call s’ the inverse of s and denote it hence-
forth by s~*. Hence

ssTi=g lg=], (s77)"l=a.
If s is of period g, then s~'=g°"!. Since s replaces 2 rational
function f=[z,, ..., 2Zn) by fe=}(Za, ..., T.), 8 ' replaces f, by j.

ExampLes For the substitutions on 3 letters {§ 9,

o (l- Ty 1':)’ at= (2T 31) (11 E2 3:) =b,

Ly Ty 2 Z, 7y T \Ty % X3

b-twa, cleme, dt=d, ¢ '=e IT'=l-



