D.E. Rydeheard
RM.Burstall

Computational
Category
Theory

C.A.R.HOARE SERIES EDITOR



Computational
Category Theory

DAVID E. RYDEHEARD

University of Manchester

ROD M. BURSTALL
University of Edinburgh

PRENTICE HALL
NEW YORK LONDON TORONTO SYDNEY TOKYO



First published 1988 by

Prentice Hall International (UK) Ltd,
66 Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RG

A division of

Simon & Schuster International Group

© 1988 D. E. Rydeheard and R. M. Burstall

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system. or transmitted, in any
form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission, in
writing, from the publisher.

For permission within the United States of America contact
Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Printed and bound in Great Britain by
A. Wheaton & Co. Ltd, Exeter.

Library of Congress Cataloging-in-Publication Data

Rydeheard, D. E. (David E.)
Computational category theory.

(Prentice Hall international series
in computer science)
Bibliography: p. Includes index
1. Categories (Mathematics) — Data processing.
2. Electronic digital computers — Programming.
[. Burstall, R. M. 11. Title. III. Series.
QAI169.R93 1988 511.3 88-4232
ISBN 0-13-162736-8

British Library Cataloguing in Publication Data

Rydeheard, D. E.. 1954-
Computational category theory.
1. Computer systems. Applications of category
theory
[. Title II. Burstall, R. M., 1934
004'.01'51255

ISBN 0-13-162736-8

12345 92919089 88

ISBN 0-13-1b2736-8&



Computational
Category Theory



Prentice Hall International
Series in Computer Science

C. A. R. Hoare, Series Editor

BACKHOUSE, R. C., Program Construction and Verification

BACKHOUSE. R. C.. Syntax of Programming Languages: Theory and practice

DE BAKKER. J. W., Mathematical Theory of Program Correctness

BIRD;R., and WADLER, P., Introduction to Functional Programming

BJORNER, D., and JONES, C. B., Formal Specification and Software Development

BORNAT ‘R.. Programming from First Principles

BUSTARD, D.. ELDER. J.. and WELSH. J.. Concurrent Program Structures

CLARK, K. L., and MCCABE. F. G., micro-Prolog: Programming in logic

DROMEY, R. G., How to Solve it by Computer

DUNCAN. F.. Microprocessor Programming and Software Development

ELDER. J.. Construction of Data Processing Software

GOLDSCHLAGER, L., and LISTER, A., Computer Science: A modern introduction
(2nd edn)

GORDON. M. J. C., Programming Language Theory and its Implementation

HAYES. I. (ED.), Specification Case Studies

HEHNER, E. C. R., The Logic of Programming

HENDERSON, P., Functional Programming: Application and implementation

HOARE, C. A. R., Communicating Sequential Processes

HOARE, C.A.R., and SHEPHERDSON, J. C. (EDS), Mathematical Logic and
Programming Languages

HUGHES, J. G., Database Technology: A software engineering approach

INMOS LTD. occam Programming Manual

INMOS LTD. occam 2 Reference Manual

JACKSON, M. A., System Development

JOHNSTON, H., Learning to Program

JONES. C. B.. Systematic Software Development using VDM

JONES, G.. Programming in occam

JOSEPH, M., PRASAD, V. R., and NATARAJAN, N., A Multiprocessor Operating
System

LEW. A.. Computer Science: A mathematical introduction

MACCALLUM, 1., Pascal for the Apple

MACCALLUM, 1., UCSD Pascal for the IBM PC

MEYER. B., Object-oriented Software Construction

PEYTON JONES. S. L., The Implementation of Functional Programming Languages

POMBERGER, G., Software Engineering and Modi!! -?

REYNOLDS, J. C., The Craft of Programnr-

RYDEHEARD. D. E.. and BURSTALL ! Category Theory

SLOMAN. M.. and KRAMER. J.. Distributed Systems and Computer Networks

TENNENT, R. D., Principles of Programming Languages

WATT, D. A., WICHMANN, B. A., and FINDLAY, W., ADA: Language and

methodology
WELSH, J.. and ELDER, J., In: _ “on to Modula-2
WELSH, J., and ELDER, J., / .ion to Pascal (3rd en)

WELSH, J., ELDER, J., and BUSTARD, D., Sequential Program siructures
WELSH. J.. and HAY . A., A Model Implementation of Standard Pascal
WELSH, J., and MCKEAG, M., Structured System Programming
WIKSTROM, A., Functional Programming using Standard ML



Foreword
John W. Gray

Why should there be a book with such a strange title as this one? Isn’t
category theory supposed to be a subject in which mathematical struc-
tures are analyzed on such a high level of generality that computations
are neither desirable nor possible? Historically, category theory arose in
algebraic topology as a way to explain in what sense the passages from
geometry to algebra in that field are ‘natural’ in the sense of reflect-
ing underlying geometric reality rather than particular representations in
that reality. The success of this endeavor led to many similar studies of
geometric and algebraic interrelationships in other parts of mathematics
until, at present, there is a large body of work in category theory ranging
from purely categorical studies to applications of categorical principles in
almost every field of mathematics. This work has usually been presented
in a form that emphasizes its conceptual aspects, so that category theory
has come to be viewed as a theory whose purpose is to provide a certain
kind of conceptual clarity.

What can all of this have to do with computation? The fact of the
matter is that category theory is an intensely computational subject, as
all its practitioners well know. Categories themselves are the models of
an essentially algebraic theory and nearly all the derived concepts are
finitary and algorithmic in nature. One of the main virtues of this book
is the unrelenting way in which it proceeds from algorithm to algorithm
until all of elementary category theory is laid out in precise computational
form. This of course cannot be the whole story because there are some
deep and important results in category theory that are non-constructive
and that cannot therefore be captured by any algorithm. However, for
many purposes, the constructive aspects are central to the whole subject.

This is important for several reasons. First of all, one of the most

ix



X FOREWORD

important features of category theory is that it is a guide to computation.
The conceptual clarity gained from a categorical understanding of some
particular circumstance in mathematics enables one to see how a com-
putation of relevant entities can be carried out for special cases. When
the special case is itself very complex, as frequently is the case, then it
is a tremendous advantage to know exactly what one is trying to do and
in principle how to carry out the computation. The idea of mechaniz-
ing such computations is very intriguing. The present book, of course,
does not enable one to do this, but it can be viewed as an essential pre-
cursor of developments that will lead to such mechanization. Categories
themselves must be present in the computer as well as many particular
examples of them before mechanical computation of categorical entities
can be carried out.

Secondly, the fact that category theory is essentially algebraic means
that it can be learned by learning these basic constructions. It comes
as something of a shock to realize that one aspect of category theory is
that it is ‘just’ a collection of ML-algorithms. However, it is particu-
larly important for computer scientists and students of computer science
that there is such a programming language representation of the subject.
Because mathematicians have accumulated geometric and algebraic intu-
itions, many things can be elided in presenting category theory to them.
But computer scientists generally lack these intuitions, so these elisions
can present a great difficulty for them. Computer code does not permit
such elisions and thus presents the basic material in a form that reassures
computer scientists and allows them to use their intuitions for and under-
standing of programs to gain an advantage similar to the mathematicians’
advantage from their knowledge of geometry and algebra.

Of course, all of this is beside the point unless there is a reason
for computer scientists to need to learn category theory. However, the
reasons are easily found by looking into almost any issue of a journal
in theoretical computer science. Either the category theory is explicitly
there or should be there and is missing only at the expense of devious
circumlocutions. It really cannot be avoided in discussing the semantics
of programming languages. The most dramatic instance of this arises in
the semantics of the polymorphic lambda calculus which underlies ML. It
really is an engaging thought that one needs category theory to explain
ML, while in turn ML is a vehicle for explaining category theory.

That brings up the last point. There is another audience for this
book; namely, category theorists who want to understand theoretical
computer science so that they can participate in the exciting interactions



FOREWORD xi

that are taking place between these two fields. One very important entry
point into the problems of theoretical computer science is just to examine
computer programs and to wonder what they mean. There probably is
no final answer to this question, but along the way, this book can serve
as an invaluable stimulus to further research.



Preface

This is an account of a project we have undertaken in which basic con-
structions of category theory are expressed as computer programs. The
programs are written in a functional programming language, called ML,
and have been executed on examples. We have used these programs
to develop algorithms for the unification of terms and to implement a
categorical semantics.

This book should be helpful to computer scientists wishing to under-
stand the computational significance of theorems in category theory and
the constructions carried out in their proofs. Specialists in programming
languages should be interested in the use of a functional programming
language in this novel domain of application, particularly in the way in
which the structure of programs is inherited from that of the mathemat-
ics. It should also be of interest to mathematicians familiar with category
theory — they may not be aware of the computational significance of the
constructions arising in categorical proofs.

In general, we are engaged in a bridge-building exercise between cat-
egory theory and computer programming. Our efforts are a first attempt
at connecting the abstract mathematics with concrete programs, whereas
others have applied categorical ideas to the theory of computation.

The original motivation for embarking on the exercise of program-
ming categorical constructions was a desire to get a better grip on cate-
gorical ideas, making use of a programmer’s intuition. The abstractness of
category theory makes it difficult for many computer scientists to master
it; writing code seemed a good way to bring it down to earth. Some-
one with a computing background who wishes to learn category theory
should have recourse to standard texts, some of which are listed later,

xiii



xiv PREFACE
but could well find this book a helpful companion text. Mathemati-
cians who have learned a little programming, perhaps in conventional
languages like Pascal, may profit from seeing how the functional pro-
gramming style can embody abstract mathematics and do it in a way not
too far from mathematical notation.

In preparing this book, we would especially like to thank John Gray
for contributing a foreword. His enthusiasm for this project will be evi-
dent. Tony Hoare and the referees gave detailed comments for improving
the book. Mike Spivey carefully read the manuscript and gave some use-
ful comments. Anne Rydeheard and John Stell undertook some proof-
reading for which we are grateful. Ma Qing Ming and Don Sannella
pointed out some errors in an early draft. Finally, we are indebted to
IATpX2 and Microsoft Word 3, two document preparation systems used
for the book.



Contents

Foreword ix
Preface xiii
1 Introduction 1
1.1 The contents 4
1.2 Accompanying texts 6
1.2.1 Textbooks on category theory 6

1.2.2 ML references and availability 7
1.2.3 A selection of textbooks on functional programming 7

1.3 Acknowledgements 8
2 Functional Programming in ML 9
2.1 Expressions, values and environments 11
2.2 Functions 13
2.2.1 Recursive definitions 14
2.2.2 Higher order functions 14

2.3 Types 15
2.3.1 Primitive types 16
2.3.2 Compound types 16
2.3.3 Type abbreviation 17

2.4 Type polymorphism 17
2.5 Patterns 20
2.6 Defining types 21
2.7 Abstract types 24
2.8 Exceptions 26
2.9 Other facilities 27
2.10 Exercises 27



vi

CONTENTS

3 Categories and Functors 35
3.1 Categories 35
3.1.1 Diagram chasing 38
3.1.2 Subcategories, isomorphisms, monics and epis 39

3.2 Examples 40
3.2.1 Sets and finite sets 40
3.2.2 Graphs 40
3.2.3 Finite categories 41
3.2.4 Relations and partial orders 41
3.2.5 Partial orders as categories 42
3.2.6 Deductive systems 42
3.2.7 TUniversal algebra: terms, algebras and equations 43
3.2.8 Sets with structure and structure-preserving arrows 46

3.3 Categories computationally 47
3.4 Categories as values 49
3.4.1 The category of finite sets 49
3.4.2 Terms and term substitutions: the category T 50
3.4.3 A finite category 52

3.5 Functors 53
3.5.1 Functors computationally 54
3.5.2 Examples 54

3.6 Duality 55
3.7 An assessment 57
3.8 Conclusion 60
3.9 Exercises 60
4 Limits and Colimits 65
4.1 Definition by universality 67
4.2 Finite colimits 68
4.2.1 Initial objects 69
4.2.2 Binary coproducts 70
4.2.3 Coequalizers and pushouts 72

4.3 Computing colimits 74
4.4 Graphs, diagrams and colimits 79
4.5 A general construction of colimits 82
4.6 Colimits in the category of finite sets 88
4.7 A calculation of pushouts 90
4.8 Duality and limits 93
4.9 Limits in the category of finite sets 95
4.10 An application: operations on relations 97
4.11 Exercises 100



CONTENTS

5 Constructing Categories
5.1 Comma categories

5.1.1

Representing comma categories

5.2 Colimits in comma categories
5.3 Calculating colimits of graphs
5.4 Functor categories

5.4.1
5.4.2

Natural transformations
Functor categories

5.5 Colimits in functor categories
5.6 Duality and limits
5.7 Abstract colimits and limits

5.7.1 Abstract diagrams and colimits
5.7.2 Category constructions
5.7.3 Indexed colimit structures
5.7.4 Discussion
5.8 Exercises
6 Adjunctions
6.1 Definitions of adjunctions
6.2 Representing adjunctions
6.3 Examples
6.3.1 Floor and ceiling functions: converting real num-
bers to integers
6.3.2 Components of a graph
6.3.3 Free algebras
6.3.4 Graph theory
6.3.5 Limits and colimits
6.3.6 Adjunctions and comma categories
6.3.7 Examples from algebra and topology
6.4 Computing with adjunctions
6.5 Free algebras
6.5.1 Constructing free algebras
6.5.2 A program
6.5.3 An example: transitive closure
6.5.4 Other constructions of free algebras
6.6 Exercises
7 Toposes

7.1 Cartesian closed categories

7.1.1

An example: the category of finite sets

7.2 Toposes

vii

103
104
105
107
109
113
113
114
116
118
120
121
122
123
123
124

127
128
130
131

132
132
134
136
138
138
139
140
142
143
144
146
149
152

155
156
157
159



viii

7.2.1 An example: the topos of finite sets
7.2.2 Computing in a topos
7.2.3 Logic in a topos
7.2.4 An example: a three-valued logic
7.3 Conclusion
7.4 Exercises

8 A Categorical Unification Algorithm
8.1 The unification of terms
8.2 TUnification as a coequalizer
8.3 On constructing coequalizers
8.4 A categorical program

9 Constructing Theories
9.1 Preliminaries
9.2 Constructing theories
9.3 Theories and institutions
9.4 Colimits of theories
9.5 Environments
9.6 Semantic operations
9.7 Implementing a categorical semantics

10 Formal Systems for Category Theory
10.1 Formal aspects of category theory
10.2 Category theory in OBJ
10.3 Category theory in a type theory
10.4 Categorical data types

ML Keywords
Index of ML Functions
Other ML Functions

Answers to Programming Exercises

g aw»

References and Bibliography

Index

CONTENTS

161
162
164
166
170
171

173
174
175
176
180

187
188
190
194
197
199
200
201

203
204
207
216
218

223
225
229
231
237
253



2 INTRODUCTION

some internal cohesion and raison d’étre, instead of a bundle of func-
tions which the modularly-minded programmer has forced into uneasy
proximity.

Another reason why computer scientists might be interested in cat-
egory theory is that it is largely constructive. Theorems asserting the
existence of objects are proven by explicit construction. This means
that we can view category theory as a collection of algorithms. These
algorithms have a generality beyond that normally encountered in pro-
gramming in that they are parameterized over an arbitrary category and
so can be specialized to different data structures.

We have expressed categorical algorithms in ML, a functional pro-
gramming language. Functional languages are closer to mathematical
notation than are imperative languages like Basic or Pascal. One writes
expressions to denote mathematical entities rather than defining the tran-
sitions of an abstract machine. ML also provides types which make a pro-
gram much more intelligible and prevent some programming mistakes.
ML has polymorphic types which allow us to express in programs some-
thing of the generality of category theory. However, the type system of
ML is not sufficiently sophisticated to prevent the illegal composition
of two arrows whose respective source and target do not match. This
requires a computation of equality on objects. It is an open question
whether a programming language with dependent types or a subtype
mechanism can do better.

The relationship of the mathematics to the ML code is as follows:
(1) categorical concepts are represented as types in ML, and (2) con-
structive proofs of theorems in category theory become ML programs.
For instance, the theorem that if a category has an initial object and
pushouts then it has all finite colimits yields an iterative algorithm for
constructing the colimiting cocone of a finite diagram, starting with the
initial object and using the pushout at each iteration.

We should make it clear that we have not invented a new program-
ming language or a new specification language. We simply used an exist-
ing functional language, ML, to write a novel kind of program of unusual
generality. Tatsuya Hagino has indeed invented such a new language for
programming and specification, based on adjoints. It turns out to be very
like ML, almost identical in its expressive power, but using fewer primi-
tive notions and hence having a more rational structure, a sort of natural
mathematical unfolding of the main language concepts as opposed to a
computer science evolution of them by trial and error of language design-
ers. We say a little about Hagino’s work in Chapter 10.



INTRODUCTION 3

It has been clear for a long time that the many of the proofs in cat-
egory theory are constructive and hence could be translated into algo-
rithms; so in a mathematical sense we have just spelled out the obvious.
However, from a programming point of view, there is considerable in-
terest in seeing carefully worked out programs to represent the essence
of the categorical proofs and to notice that these programs have a cer-
tain elegance and pleasing structure. We went to considerable trouble
through various formulations to embody as much of the elegance of the
categorical approach as possible in our programs. For example, having
written a certain function which we needed, we noticed that it formed
the object part of a functor and that the arrow would be helpful later on.
Seeing these two functions as part of the same functor is a good example
of categorical thinking imposing mathematical structure on a program.
The Nuprl system [Constable et al. 85] is a proof development system
based on constructive logic which automatically extracts a program from
a proof. It would be interesting to see how such automatically generated
programs compare with our hand-coded ones. Probably in Nuprl one
could obtain elegant programs by creating a proper organization of the
proof, but the question is as yet unexplored. Unlike the Nuprl formu-
lation, our algorithms only represent part of the information in a proof;
they embody the construction; the remaining information in the proof
corresponds to the verification showing that the construction produces
the required result.

In programming category theory, we are confronted at the outset
by the problem: how do we represent a category? Do we use a list of
objects and a list of arrows? This would mean we represent only finite
categories. Instead we use a functional representation in which the class
of objects and that of arrows are types in ML. This allows us to repre-
sent infinite categories. Another representation problem arises with the
ubiquitous universal properties of category theory. Again we make use
of functions, in this case higher order functions. The programs derived
from categorical constructions are parameterized on categories. In order
to apply the programs to a range of categories, we need systematic ways
of constructing categories rather than explicitly encoding them. Goguen
suggested we use comma categories for computations on structures such
as graphs. We have also made use of functor categories. Another aspect
of category theory that is used in the programming is duality. Duality
is a fundamental principle in category theory arising from the invariance
of the theory under the reversal of arrows. We use it, for instance, to
convert programs computing colimits to those computing limits.



4 INTRODUCTION

In a final chapter we discuss other approaches to computational rep-
resentation of category theory, notably those of Dyckhoff and Goguen,
which are similar in spirit to ours, and that of Hagino, which differs
rather radically and interestingly.

We have discovered that applications of our categorical approach to
specific computing problems are not easily developed. You have to really
understand a task to abstract it in a categorical framework. However, we
have two quite interesting applications, a general unification algorithm
using coequalizers, which specializes to known unification algorithms,
and a categorical implementation of the specification constructing oper-
ations in the language Clear.

Since the early 1970s there has been an increasing amount of interest
in using category theory to explicate aspects of the theory of compu-
tation, in particular, the semantics of programming languages. This is
somewhat outside the scope of this book although we try to indicate
where categorical concepts are relevant to programming. The range of
applications of category theory in computation may be judged from the
proceedings of two conferences published as Lecture Notes in Computer
Science, nos. 240 (1986) and 283 (1987), Springer-Verlag.

1.1 The contents

In the succeeding chapters, we describe the techniques used in the pro-
gramming of category theory.

In Chapter 2, we describe the functional programming language Stan-
dard ML. We cover all the features of ML that we use later in the book,
using illustrative examples. This is meant as a tutorial and a series of
exercises is included. Answers to these exercises may be found in an
appendix to the book. Those with knowledge of ML can safely omit this
chapter. Those with some experience of functional languages may wish
to browse through the chapter to acquaint themselves with the syntax
of ML. Others ought to read the chapter so as to be able to understand
the subsequent programming. In Appendix A there is an index of ML
keywords. This may be used as a reference for reading ML programs.
Programming in ML is often a rewarding experience and we encourage
the reader to get hold of an ML system to practice on.

Chapters 3 to 7 lay out basic category theory. We describe the
mathematical concepts and constructions and the corresponding ML pro-
grams. We choose illustrative examples which are relevant to program-
ming rather than those drawn from areas of abstract mathematics. In



