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Preface

Pioneering research in computer science in the 1970s has led to a
revolution in information technology this decade. Two of the most
important new directions in software engineering are logic programming
and knowledge engineering. They both embody the basic change in
computing — a move away from program-controlled computing to
computing derived by deduction and reasoning.

The key idea behind logic programming is to replace programming
and computation by a logical description of a problem and an automatic
proof mechanism for deducing the answers.

The basis of knowledge engineering is to make intelligent,
problem-solving expert systems knowledge-based by finding and applying
the rules and heuristics that govern experts’ problem-solving processes.
Knowledge-based systems differ from traditional programs in that they
are derived directly from these rules, with no intervening programming.

The combination of these two ideas will change the future of
software engineering and replace ideas that have become too formalized,
inflexible and problematic. Computer technology will adapt itself to
support this development.

This book is written for students and professionals with an interest
in engineering, who need a theoretical as well as practical introduction to
logic programming and how it can be used to build knowledge-based
systems. It is suitable for an undergraduate course at third or fourth year
level. For complete understanding, it requires two years of programming
experience with some knowledge of Pascal, but parts of the book should
be comprehensible to a wider readership.

The book falls roughly into two parts: an introduction to logic
programming; and applications of logic programming. The first part
introduces predicate logic, resolution and the programming language
Prolog. It looks in detail at a subset of the language, list processing in
Prolog and advanced programming techniques, with the emphasis on
meta-level logic programming. The second part of the book looks at the
application of Prolog for formula manipulation, including program
verification, and as a sophisticated query language for relational
databases. It also describes how to process formal languages, including
compiler writing; how to process an interesting and useful subset of
natural language; and how to apply knowledge for problem-solving. In
addition, it describes an expert system shell in Prolog, with several
applications, and gives a short overview of a knowledge engineering
project using these ideas.
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The appendix contains a collection of useful Prolog predicates.

The language used for the programming examples will be a subset
of the Edinburgh Prolog, specifically the C-Prolog VAX version (Pereira,
1984) under the VMS operating systems. The language subset is kept
simple, so that the ideas of logic programming are easier to follow. This
text, therefore, is not intended to be a reference manual of the fast, user-
friendly Prolog system.
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Chapter 1
Introduction

Make rules,
not programs!

1.1 Make specifications, not programs

The first computers were built to alleviate the burden of numerical
computation. The computer could with little effort be programmed to
perform any sequence of operations, and such was people’s confidence in
the machines that some engineers predicted that only a few computers
would ever be needed for all the world’s data processing.

Every day, computer applications once regarded as an unthinkable
misuse of costly laboratory instruments are being developed. In fact, so
many new applications are appearing that programming itself is losing its
status as an art or handicraft, and is becoming more like traditional
engineering. To cope with problems in large scale programming, the
computer languages that control the computers have become more and
more high level and standardized so that programmers can now exchange
programs between systems.

To increase the level of programming, users have to specify what
a program should do, but not how it should be done. However, as
computing machinery became faster and cheaper, economics allowed
more details to be automated by advanced computer software.

It is amusing today to read old arguments explaining why the
computer should translate mathematical formulae, as in FORTRAN,
instead of letting them be programmed more -efficiently by skilled
assembly language programmers (Backus, 1958). Few programmers today
realize that FORTRAN formulaec were once regarded as high-level
mathematical specifications of a problem, rather than as programs
themselves.

The tendency towards making specifications rather than programs
is never ending. The ultimate goal would seem to be natural language
specifications, therefore. However, natural language is imprecise, am-
biguous and sensitive to context, and precision cannot be compromised.
A formalism that approximates to precise natural language descriptions is
logic. The ideal specification language of the future may well be some

1



2 LOGIC PROGRAMMING AND KNOWLEDGE ENGINEERING

kind of symbolic logic, leaving natural language for communication
through the user interface.

Logic programming is the use of logic to define computer
programs. The most notable programming language for logic program-
ming is Prolog, an acronym for PROgramming in LOGic. What makes
Prolog not just another programming language is its emphasis on the
specifications of a problem. Rather than defining the algorithm for solving
the problem, Prolog solves problems by systematically searching for a
solution. Thus, Prolog is a significant step towards automatic program-
ming.

Since the conception of Prolog in the early 1970s, the number of
Prolog programmers has been doubling every year, which has created a
market for fast and intelligent implementations of the language.

1.2 Symbolic processing language

Prolog is a language for processing symbolic information, that is, for
processing general dynamic symbolic data structures and creating new
structures during run-time. This is also a dominant feature of the
programming language LISP (Winston and Horn, 1981). In symbolic
processing languages, identifiers represent themselves rather than being
names of storage locations as in languages such as Pascal. Prolog is also a
declarative language. Programmers describe what they know in a precise
manner, and leave the rest to the Prolog interpreter.

For example, a programmer wants to say that Harold is the father
of Robin. In Pascal, he or she could imagine a linked list of name-records
with pointers representing the father relations:

TYPE
person = RECORD
name : PACKED ARRAY [1..12] OF CHAR;
father :“person ;
next :“person ;
END
var a,b:"person

a".name :=‘HAROLD ’;
b".name :=‘ROBIN ’;
b".father := a ;
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In addition, separate programs must be written in Pascal before

any information can be obtained.
In Prolog, this symbolic information can be expressed much more

directly as
father(harold,robin),
which Prolog accepts as a true statement. If Prolog gets the query
?—father(X,robin),
it will respond with the answer
X=harold;
The query
?—father(harold, Y).
will give the answer
Y =robin;
while the query
?—father(X,Y).
will elicit the answer

X=harold
Y =robin;

1.3 Fifth generation computer systems

Prolog is now a generic name for various languages and dialects around a
logic programming paradigm, and has gained great enthusiasm among an
increasing number of programmers. This enthusiasm was boosted by the
announcement of the Japanese Fifth Generation Computing Systems
Programme (Moto-Oka, 1982), which adopted Prolog as the kernel
language (Fifth Generation Kernel Language, FGKL) of the new type of
computers called knowledge information processing systems (KIPS).
The fifth generation computer project aims to develop a completely
new type of computer that can communicate in everyday language,
reason intelligently and bring an enormous amount of stored knowledge
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to help solve any problem that the user may have. The machines will be
cheap and reliable, and so widespread in offices, factories and homes that
society itself may be changed by the huge fund of expertise made

available.
The fifth generation computer will have three main components:

® an intelligent man machine interface (natural language, written or
spoken, graphical);
problem solving (with logic and statistical reasoning);

a knowledge base facility able to store and retrieve vast amounts of
data, and also give judgements and advice.

The programme’s detailed plans promise to make incredibly fast
Prolog machines for the 1990s; with a reasoning capacity of up to a billion
logic inferences per second (one gigalips), and with associated memory
storage of hundreds of gigabytes.

By 1986, the Japanese were already producing high performance
Prolog workstations as a tool to accelerate their own development.
Needless to say, recent achievements in the Japanese high-technology
industries have conditioned us to expect a new success.

In light of this, logic programming, and Prolog in particular, is
becoming very important.

1.4 History of logic programming

1.4.1 Aristotelian logic

Logic programming is based on logic, so the right place to start is with the
origin of logic, which has its roots with the philosopher Aristotle
(382-324 BC). He had an enormous influence on scientific thinking, but
some of his ideas did not deserve much reverence. For example, Aristotle
said that horses had more teeth than men, without counting them, and
that the brain was an organ for cooling the blood, which is only true
metaphorically. However, he will be remembered forever for his classic
work Organon, where he summarized the laws of correct systematic
thinking. According to Aristotle, correct reasoning proceeds by the
application of strict rules of inference called syllogisms. A small example
is:

Premise 1: All humans are mortal.
Premise 2: All Greeks are humans.
Premise 3: Socrates is Greek.

Conclusion: Socrates is mortal.



