-
ile
INTERNATIONAL

4 COMPUTER SCIENCE
SERIES

Logic Programming
and Knowledge
Engineering
Tore Amble

TP
A473

8863951

Logic Programming
and Knowledge
Engineering
Tore Amble

Il

E8863951

A
vvy
ADDISON-WESLEY
PUBLISHING
COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park, California
New York - Don Mills, Ontario - Amsterdam - Bonn - Sydney
Singapore - Tokyo - Madrid - Bogota - Santiago - San Juan

© 1987 Addison-Wesley Publishers Ltd.
© 1987 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs in this book have been included for their instructional value.

They have been tested with care but are not guaranteed for any particular
purpose. The publisher does not offer any warranties or representations, nor does
it accept any liabilities with respect to the programs.

Cover graphic by Laurence M. Gartel.
Typeset by Columns of Reading.
Printed and bound in Great Britain by T J Press (Padstow) Ltd, Cornwall.

First printed 1987.

British Library Cataloguing in Publication Data

Amble, Tore
Logic programming and knowledge engineering.
—(International computer science series).
1. Expert systems (Computer science)
2. Electronic digital computers—
Programming 3. Logic, symbolic and
mathematical
I. Title II. Series
005.13'1 QA76.76.E95

ISBN 0-201-18043-X

Library of Congress Cataloging in Publication Data

Amble, Tore, 1945-
Logic programming and knowledge engineering.

(International computer science series)

Bibliography: p.

Includes index.

1. Logic programming. 2. Expert systems (Computer
science) 1. Title. II. Series.
QA76.6.A464 1987 005.1 87-13556
ISBN 0-201-18043-X

Logic Programming
and Knowledge
Engineering

INTERNATIONAL COMPUTER SCIENCE SERIES

Consulting editors A D McGettrick University of Strathclyde
J van Leeuwen University of Utrecht

OTHER TITLES IN THE SERIES

Programming in Ada (2nd Edn.) J G P Barnes

Software Engineering (2nd Edn.) I Sommerville

An Introduction to Numerical Methods with Pascal L V Atkinson and P J Harley
The UNIX System S R Bourne

Handbook of Algorithms and Data Structures G H Gonnet
Microcomputers in Engineering and Science J F Craine and G R Martin
UNIX for Super-Users E Foxley

Software Specification Techniques N Gehani and A D McGettrick (eds.)
Introduction to Expert Systems P Jackson

Data Communications for Programmers M Purser

Local Area Network Desigp “A prper, S Temple and R C Williamson
Modula-2: Discipline & Design A H J Sale

The UNIX System V Er{vi:onment S R Rourne

Prolog Programming for‘A;itﬁiaPInte&igence I Bratko

Prolog F Giannesini, H K&'hqu\i,Jj’ Baséf;) and M van Caneghem
Programming Language .Translation: A Practical Approach P D Terry
Data Abstraction in Programming Languages J M Bishop

System Simulation: Programming Styles and Languages W Kreutzer

The Craft of Software Engineering A Macro and J Buxton

UNIX System Programming K F Haviland and B Salama

An Introduction to Programming with Modula-2 P D Terry

Pop-11 Programming for Artificial Intelligence A M Burton and N R Shadbolt
The Specification of Computer Programs W M Turski and T S E Maibaum

Software Development with Ada I Sommerville and R Morrison

UNIX™ is a trademark of AT & T.

Preface

Pioneering research in computer science in the 1970s has led to a
revolution in information technology this decade. Two of the most
important new directions in software engineering are logic programming
and knowledge engineering. They both embody the basic change in
computing — a move away from program-controlled computing to
computing derived by deduction and reasoning.

The key idea behind logic programming is to replace programming
and computation by a logical description of a problem and an automatic
proof mechanism for deducing the answers.

The basis of knowledge engineering is to make intelligent,
problem-solving expert systems knowledge-based by finding and applying
the rules and heuristics that govern experts’ problem-solving processes.
Knowledge-based systems differ from traditional programs in that they
are derived directly from these rules, with no intervening programming.

The combination of these two ideas will change the future of
software engineering and replace ideas that have become too formalized,
inflexible and problematic. Computer technology will adapt itself to
support this development.

This book is written for students and professionals with an interest
in engineering, who need a theoretical as well as practical introduction to
logic programming and how it can be used to build knowledge-based
systems. It is suitable for an undergraduate course at third or fourth year
level. For complete understanding, it requires two years of programming
experience with some knowledge of Pascal, but parts of the book should
be comprehensible to a wider readership.

The book falls roughly into two parts: an introduction to logic
programming; and applications of logic programming. The first part
introduces predicate logic, resolution and the programming language
Prolog. It looks in detail at a subset of the language, list processing in
Prolog and advanced programming techniques, with the emphasis on
meta-level logic programming. The second part of the book looks at the
application of Prolog for formula manipulation, including program
verification, and as a sophisticated query language for relational
databases. It also describes how to process formal languages, including
compiler writing; how to process an interesting and useful subset of
natural language; and how to apply knowledge for problem-solving. In
addition, it describes an expert system shell in Prolog, with several
applications, and gives a short overview of a knowledge engineering
project using these ideas.

W-
g
£
i

vi PREFACE

The appendix contains a collection of useful Prolog predicates.

The language used for the programming examples will be a subset
of the Edinburgh Prolog, specifically the C-Prolog VAX version (Pereira,
1984) under the VMS operating systems. The language subset is kept
simple, so that the ideas of logic programming are easier to follow. This
text, therefore, is not intended to be a reference manual of the fast, user-
friendly Prolog system.

Acknowledgements

This book about logic programming and knowledge engineering is a result
of 12 years of research and teaching at the University of Trondheim’s
RUNIT Computing Centre and Division of Computing Science. It is a
sequel to an earlier version (Amble, 1984). Many of my colleagues
deserve to be mentioned for their help with that version, but I must
confine the list to those who have been particularly helpful with the
current volume.

First, I am grateful to my colleague Haakon Styri for his
encouragement and good advice, based on his impressive knowledge of
all aspects of logic programming.

I was fortunate enough to have the opportunity of working on two
different projects, both applying logic programming for knowledge
engineering. The first was an expert system for diagnosing and teaching
television repair; in this field, Roger Eide is an enthusiastic expert and
teacher. The other project was to make an expert system for designing
welding processes. On this project, I had the pleasure of working with
Bjarte H. Nes, who is co-author of the chapter on knowledge
engineering. Both projects confirm that the idea of applying logic
programming for knowledge engineering works.

Among the people who have scrutinized the manuscripts at various
stages, Arild Waaler and Catherine Churchill deserve thanks for their
helpful corrections and comments.

A draft version of the book was used for a logic programming
course at the University of Trondheim in the fall of 1986. I gained
invaluable feedback from the class.

Finally, my bad conscience leads me to express my gratitude
towards my wife and children: young children’s parents shouldn’t really
write books.

Figure 13.4 is taken from Hayes-Roth, Waterman and Lenat, Building
Expert Systems, © 1983, Addison-Wesley Publishing Company Inc.,
Reading, Massachusetts’ (p. 389, Figure A.1), and is reprinted with
permission.

8863951

Contents

Preface v

Chapter 1 Introduction 1
1.1 Make specifications, not programs 1
1.2 Symbolic processing language 2
1.3 Fifth generation computer systems 3
1.4 History of logic programming 4

1.4.1 Auristotelian logic 4
1.4.2 Symbolic logic 5
1.4.3 Logic programming 7
1.5 Aurtificial intelligence 8
1.5.1 The limits of mind 9
1.5.2 Knowledge-based systems 9
1.5.3 Expert systems 10
1.5.4 Knowledge engineering 11

Chapter 2 Introduction to Logic 12
2.1 Elements of logic ‘12
2.2 Propositional calculus 13

2.2.1 The elimination rule 15
2.2.2 Clausal form 16
2.2.3 Refutation proofs 17
2.3 First order predicate logic 20
2.3.1 Predicates and arguments 21
2.3.2 Quantifier-free notation 22
2.3.3 Formalizing queries and contradictions 22
2.3.4 Horn clause resolution 23
2.3.5 Alternative proof strategies 24
2.3.6 Functions in predicate logic 25
2.3.7 Unification of functional terms 26
2.3.8 Logic programming 26

Chapter 3 Resolution 29
3.1 Some logical concepts 29
3.2 Quantifiers 31

3.2.1 Examples of quantifiers 32
3.2.2 Second order logic concepts 32
3.3 First order predicate calculus 33

3.3.1 Skolem functions 34

vii

viii CONTENTS

Chapter

Chapter

3.4

4
4.1

4.2
4.3
4.4
4.5

4.6

4.7
4.8

5

5.1
5.2
53
5.4
5.5
5.6
5.7

5.8

3.3.2 From predicate logic to clausal form
3.3.3 Clause normalization algorithm
3.3.4 The complete unification algorithm
The resolution proof method

3.4.1 Resolution step

3.4.2 Resolution proof

3.4.3 Resolution proof search strategies

Predicate Logic as a Programming Language

Syntax

4.1.1 Basic syntax

4.1.2 Functions

4.1.3 Clause syntax

4.1.4 Program structure

4.1.5 Describing predicates

4.1.6 Input/output and comments

The semantics of Prolog

Search tree

Recursion

On variable bindings

4.5.1 Anonymous variables

4.5.2 Renaming variables

4.5.3 Occur check

Symmetry properties

4.6.1 Symmetry of sequence of conclusions
4.6.2 Symmetry of sequence of conditions
4.6.3 Test-or-generate symmetry

4.6.4 Input/output parameter symmetry
Cutting the search tree

Using the cut operator, !

4.8.1 Negation as failure

4.8.2 Cut unnecessary search

4.8.3 Cut destroys symmetry

4.8.4 Variable conditions

4.8.5 Equality and inequality

Programming in Prolog

Predicate library
Interactive Prolog

Basic input and output
Built-in operators in Prolog
Evaluation of expressions
Query processing
Manipulating the database
5.7.1 Assert

5.7.2 Retract

Operator declarations

35
36
38
39
39
40
41

44

44
44
45
45
45
46
46
46
48
48
50
51
51
52
53
53
53
54
54
54
56
56
58
58
59
60

62

62
63
65
66
67
68
69
69
70
71

Chapter

Chapter

6

6.1
6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9

7
7.1

%)

= 7.3

7.4

7.5
7.6
7.7
7.8

CONTENTS

5.8.1 Extralogical features

List Processing

List processing

S-expression

The empty node

List notation

6.4.1 Transforming list notation to dot notation
6.4.2 Transforming dot notation to list notation
6.4.3 Extension to Prolog S-expression
Elementary list predicates

6.5.1 The cons predicate

6.5.2 The member predicate

6.5.3 The append predicate

6.5.4 The delete predicate

6.5.5 Naive reverse

6.5.6 Smart reverse

Lists and sets

6.6.1 Representing information as lists or as facts
6.6.2 The unexpected nature of the built-in setof
6.6.3 Set construction without databases
D-lists

6.7.1 D-list manipulation

6.7.2 Limitations of Prolog list structures

An application: sorting

6.8.1 Mergesort

6.8.2 Quicksort

Alternative list syntax

6.9.1 Strings

6.9.2 Round lists

6.9.3 List processing with round lists

Logic Programming Techniques

Constructing recursive programs
7.1.1 A closer look at recursion
7.1.2 Path problems

7.1.3 Finding the path
Constructing iterative programs
Possible implications

7.3.1 An application: Mastermind
The cut operator considered harmful
7.4.1 Examples of hazardous cuts
7.4.2 Structured use of cut
Resolution preprocessing

Inversion

Non-Horn logic programming
Meta-programming

ix

75

78

78
78
79
80
82
83
83
84
84
85
86
87
88
88
89
91
92
94
95
96
97
97
97
98
99
99
100
101

104

105
105
106
107
108
112
112
114
115
115
116
117
119
121

X CONTENTS

7.9

Chapter 8

8.1
8.2
8.3
8.4
8.5

8.6
8.7

Chapter 9
9.1

9.2

9.3
9.4

9.5
9.6

9.7

Chapter 10

10.1
10.2
10.3

10.4

7.8.1 Element by element application
7.8.2 Aggregate functions

Meta-logic

7.9.1 Explaining facility in meta-level logic

Formula Manipulation

Symbolic differentiation

Manipulation

Anatomy of operator expressions
Formula evaluation

Algebraic simplification

8.5.1 Common subexpressions
Integration

Program verification

8.7.1 Program verification in Prolog
8.7.2 A verification condition generator

Logic and Databases

Relational databases

9.1.1 A relational example
9.1.2 Binary relations

9.1.3 Composite keys
Database retrieval

9.2.1 Efficient retrieval

9.2.2 Virtual tables

9.2.3 Symbolic naming
Database updating

Data modelling

9.4.1 Normal forms

9.4.2 Relational normal forms
Beyond the relational model
Semantic nets

9.6.1 The class concept

The course model

9.7.1 Coupling semantic nets to tables
9.7.2 Typical questions

Logic Programming and Compiler Writing

Language processing

Lexical analysis

Syntax analysis

10.3.1 Clause grammar

10.3.2 Table-driven parsing
10.3.3 Constructing a syntax tree
10.3.4 Prettyprinting a syntax tree
Semantics and production

122
123
124
126

130

130
131
131
133
135
137
138
139
141
141

146

146
147
148
148
149
149
150
151
153
154
155
155
158
158
159
163
164
165

167

167
167
170
173
175
177
177
178

10.5

Chapter 11

11.1
11.2
11.3

11.4

11.6

Chapter 12

12.1
12.2
12.3
12.4

12.5
12.6

12.7

Chapter 13

13.1
13.2

CONTENTS

Advanced grammar formalisms
10.5.1 Two-level grammars
10.5.2 Attribute grammars

Natural Language Processing

What is natural language?

Applied natural language

Natural language systems in Prolog

11.3.1 Definite clause grammars

11.3.2 Natural language is ambiguous

Soft Systems

11.4.1 The Soft Systems language

11.4.2 Sample questions

11.4.3 The dialogue context

11.4.4 The reference model

11.4.5 Lexical analysis

11.4.6 Syntax analysis

11.4.7 A short attribute grammar for de-verbed
language

11.4.8 Semantic analysis with semantic nets

11.4.9 Query processing

Pure natural language

11.5.1 A logic for commonsense knowledge

11.5.2 Why do we do what we do?

11.5.3 A Prolog program for a room situation

Natural language processing in the future

Logic for Problem Solving

What is the problem?

Generalized function application
Algorithmic versus search problems
Knowledge for problem solving

12.4.1 Generate-and-test

12.4.2 Generate-or-test

A meta-problem solver

Robot planning

12.6.1 Kowalski’s formulation

12.6.2 Linear planning

Using estimates to guide searches

12.7.1 Stepwise increasing length of solution
12.7.2 Finding short paths

12.7.3 Making a plan before execution

Expert Systems

Expert systems
Expert systems in Prolog

xi

182
182
183

188

188
188
189
190
190
194
194
196
196
197
198
200

200
202
203
204
204
205
206
207

209

209
209
210
211
213
214
216
218
218
222
222
223
224
226

229

229
230

xil CONTENTS

13.3

13.4
13.5

13.6

13.7

13.8

13.9
13.10

Chapter 14
14.1

14.2

Appendix

Principles of the EXPLAIN expert system shell
13.3.1 Why and how — explanation

An example of use of EXPLAIN: television repair
The structure of EXPLAIN

13.5.1 Important predicates

13.5.2 EXPLAIN program skeleton

13.5.3 Handling of negation

13.5.4 Opening the closed world

13.5.5 Storage versus recomputation

EXPLAIN reference manual

13.6.1 Rules

13.6.2 Base variables and equality

13.6.3 Coupling to relational tables

EXPLAIN user guide

13.7.1 Expert system components

13.7.2 Calling EXPLAIN

13.7.3 Summary of commands

13.7.4 The EXPLAIN dialogue explained
Another example of EXPLAIN: pollution detection
13.8.1 The pollution detection knowledge base
13.8.2 Sample dialogue

13.8.3 The structure of the pollution knowledge base
EXPLAIN expert system shell listing

Non-exact reasoning

13.10.1 Multivalued logic

13.10.2 Uncertain logic

13.10.3 Uncertainties in EXPLAIN

Knowledge Engineering

A knowledge engineering example

14.1.1 The problem

14.1.2 The project

14.1.3 Knowledge acquisition

14.1.4 Knowledge base statistics

14.1.5 Performance

14.1.6 User reactions

14.1.7 Sample dialogue for a welding consultation
Comparison with traditional system development

Predicate Library

Bibliography

Index

231
231
232
235
235
236
237
237
238
239
239
240
241
242
242
243
243
244
245
245
248
249
250
254
254
255
257

261

261
263
263
264
265
266
266
267
268

269

274

279

Chapter 1
Introduction

Make rules,
not programs!

1.1 Make specifications, not programs

The first computers were built to alleviate the burden of numerical
computation. The computer could with little effort be programmed to
perform any sequence of operations, and such was people’s confidence in
the machines that some engineers predicted that only a few computers
would ever be needed for all the world’s data processing.

Every day, computer applications once regarded as an unthinkable
misuse of costly laboratory instruments are being developed. In fact, so
many new applications are appearing that programming itself is losing its
status as an art or handicraft, and is becoming more like traditional
engineering. To cope with problems in large scale programming, the
computer languages that control the computers have become more and
more high level and standardized so that programmers can now exchange
programs between systems.

To increase the level of programming, users have to specify what
a program should do, but not how it should be done. However, as
computing machinery became faster and cheaper, economics allowed
more details to be automated by advanced computer software.

It is amusing today to read old arguments explaining why the
computer should translate mathematical formulae, as in FORTRAN,
instead of letting them be programmed more -efficiently by skilled
assembly language programmers (Backus, 1958). Few programmers today
realize that FORTRAN formulaec were once regarded as high-level
mathematical specifications of a problem, rather than as programs
themselves.

The tendency towards making specifications rather than programs
is never ending. The ultimate goal would seem to be natural language
specifications, therefore. However, natural language is imprecise, am-
biguous and sensitive to context, and precision cannot be compromised.
A formalism that approximates to precise natural language descriptions is
logic. The ideal specification language of the future may well be some

1

2 LOGIC PROGRAMMING AND KNOWLEDGE ENGINEERING

kind of symbolic logic, leaving natural language for communication
through the user interface.

Logic programming is the use of logic to define computer
programs. The most notable programming language for logic program-
ming is Prolog, an acronym for PROgramming in LOGic. What makes
Prolog not just another programming language is its emphasis on the
specifications of a problem. Rather than defining the algorithm for solving
the problem, Prolog solves problems by systematically searching for a
solution. Thus, Prolog is a significant step towards automatic program-
ming.

Since the conception of Prolog in the early 1970s, the number of
Prolog programmers has been doubling every year, which has created a
market for fast and intelligent implementations of the language.

1.2 Symbolic processing language

Prolog is a language for processing symbolic information, that is, for
processing general dynamic symbolic data structures and creating new
structures during run-time. This is also a dominant feature of the
programming language LISP (Winston and Horn, 1981). In symbolic
processing languages, identifiers represent themselves rather than being
names of storage locations as in languages such as Pascal. Prolog is also a
declarative language. Programmers describe what they know in a precise
manner, and leave the rest to the Prolog interpreter.

For example, a programmer wants to say that Harold is the father
of Robin. In Pascal, he or she could imagine a linked list of name-records
with pointers representing the father relations:

TYPE
person = RECORD
name : PACKED ARRAY [1..12] OF CHAR;
father :“person ;
next :“person ;
END
var a,b:"person

a".name :=‘HAROLD ’;
b".name :=‘ROBIN ’;
b".father := a ;

INTRODUCTION 3

In addition, separate programs must be written in Pascal before

any information can be obtained.
In Prolog, this symbolic information can be expressed much more

directly as
father(harold,robin),
which Prolog accepts as a true statement. If Prolog gets the query
?—father(X,robin),
it will respond with the answer
X=harold;
The query
?—father(harold, Y).
will give the answer
Y =robin;
while the query
?—father(X,Y).
will elicit the answer

X=harold
Y =robin;

1.3 Fifth generation computer systems

Prolog is now a generic name for various languages and dialects around a
logic programming paradigm, and has gained great enthusiasm among an
increasing number of programmers. This enthusiasm was boosted by the
announcement of the Japanese Fifth Generation Computing Systems
Programme (Moto-Oka, 1982), which adopted Prolog as the kernel
language (Fifth Generation Kernel Language, FGKL) of the new type of
computers called knowledge information processing systems (KIPS).
The fifth generation computer project aims to develop a completely
new type of computer that can communicate in everyday language,
reason intelligently and bring an enormous amount of stored knowledge

4 LOGIC PROGRAMMING AND KNOWLEDGE ENGINEERING

to help solve any problem that the user may have. The machines will be
cheap and reliable, and so widespread in offices, factories and homes that
society itself may be changed by the huge fund of expertise made

available.
The fifth generation computer will have three main components:

® an intelligent man machine interface (natural language, written or
spoken, graphical);
problem solving (with logic and statistical reasoning);

a knowledge base facility able to store and retrieve vast amounts of
data, and also give judgements and advice.

The programme’s detailed plans promise to make incredibly fast
Prolog machines for the 1990s; with a reasoning capacity of up to a billion
logic inferences per second (one gigalips), and with associated memory
storage of hundreds of gigabytes.

By 1986, the Japanese were already producing high performance
Prolog workstations as a tool to accelerate their own development.
Needless to say, recent achievements in the Japanese high-technology
industries have conditioned us to expect a new success.

In light of this, logic programming, and Prolog in particular, is
becoming very important.

1.4 History of logic programming

1.4.1 Aristotelian logic

Logic programming is based on logic, so the right place to start is with the
origin of logic, which has its roots with the philosopher Aristotle
(382-324 BC). He had an enormous influence on scientific thinking, but
some of his ideas did not deserve much reverence. For example, Aristotle
said that horses had more teeth than men, without counting them, and
that the brain was an organ for cooling the blood, which is only true
metaphorically. However, he will be remembered forever for his classic
work Organon, where he summarized the laws of correct systematic
thinking. According to Aristotle, correct reasoning proceeds by the
application of strict rules of inference called syllogisms. A small example
is:

Premise 1: All humans are mortal.
Premise 2: All Greeks are humans.
Premise 3: Socrates is Greek.

Conclusion: Socrates is mortal.

