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Preface

OBJECTIVES OF THIS BOOK

One can rarely pick up a trade journal or systems management text without
finding an article on the subject of managing the systems development process,
ensuring the satisfaction of systems users, or keeping project budgets under
control. Now the subject of the “software challenge,” the challenge of producing
computer software systems of high quality and low cost in a timely fashion, is
becoming a topic of interest to the popular and business press.

There are, today, tools, techniques, methodologies, and strategies available
to software development management to meet the software challenge. The
intention of Information Systems Development: Principles of Computer-Aided
Software Engineering is to outline an integrated strategy and methodology for
improving information systems development productivity. This strategy calls
for:

I. A structured, well-defined planning process that drives systems
development
2. Anengineering approach to developing software and managing projects

3. Specifications for a computer-aided software engineering (CASE)
system, an automated tool kit to support managers and software
developers

Although the strategy and procedures outlined in this book are oriented to
the process of developing business-oriented information systems, the techniques
and processes outlined support engineered products/embedded systems and
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xii Preface
large-scale special-purpose systems (such as those of the Department of Defense
and the aerospace industry) as well.

AUDIENCE

Information Systems Development presents a comprehensive management and
technical overview of the process of developing information systems. Its
management and planning procedures and implementation recommendations
would be of great value to a director or vice president of management
information systems (MIS). Since the specific technical processes for designing
software are covered, this book would also be an excellent guide for managers,
analysts, or consultants charged with selecting and implementing development
techniques.

Project and systems development managers will find the discussions of the
systems development life cycle and project management techniques most helpful
in managing their projects. Some of the techniques can be implemented
immediately with visible, short-term results.

Since this book examines and defines the software development process
from planning to implementation, it could be used as either a primary or
supplementary textbook for advanced courses in MIS or project management.

WHY THIS BOOK WAS WRITTEN:
THE SOFTWARE CHALLENGE

The “software challenge” refers to the conflict between the desire on the part of
data processing users to have new, high-quality* information systems, and the
ability of the systems development organization or department to deliver them in
a timely, cost-effective manner.

The software challenge is really two problems. The first problem is
immediate. It is relatively common knowledge that development projects rarely
come in on target. Systems installed typically have extensive “bug-fixing”
maintenance periods after installation, frequently disrupting the normal
operations of the enterprise. Software development is expensive and unreliable.

The second problem is more insidious and less visible. There are limited
software development resources. A recent U.S. Department of Defense (DoD)
study entitled “Software Technology for Adaptable Reliable Systems” indicated
that demand for computer software is increasing at a 129% compound rate
annually, while the supply of expert computer software professionals is growing

*Throughout this book, the term “high-quality” will represent both absence of defect and
adherence to the user’s needs.
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at only a 4% compound rate. Present productivity tools can be expected to
increase productivity only 4%. This study concludes, therefore, that by 1990,
there could be a shortage of qualified software development personnel of as many
as | millon persons. This means that while demand for software is growing, the
resources that can provide it are not. This translates directly into higher labor
costs, hence higher software costs. Even if the developers are available, they may
not be affordable.

FUELING THE GROWTH IN SOFTWARE DEMAND

What is fueling this tremendous growth in demand for computer software?

First, tremendous advances in hardware engineering and technology,
combined with the plummeting cost of computers (mainframe, mini, micro, and
home), are fueling demand for application software to make these computers
operate.

Second, during the 1970s, quality of product and productivity of the
American work force threatened the very survival of the U.S. economic system.
Executive management recognized that the computerization of America was the
key to regaining American industrial and economic supremacy. The latest
software applications to support this computerization are significantly more
complex than the applications developed in the 1960s and 1970s.

Third, the world of consumer products has discovered the microchip.
Everything from automobiles, dishwashers, and microwave ovens to industrial
photocopiers and robotics systems are now computer controlled. This new
world of embedded systems, or engineered computer products, represents a
whole new vista of software applications.

Fourth, a growing awareness of the “Information Age,” spurred by such
works as Alvin Toffler’s Third Wave and John Naisbitt’s Megatrends, has made
mainstream America more computer literate. Hence they are more demanding of
organizations that provide computer software.

WHAT DOES THIS MEAN TO SOFTWARE
DEVELOPMENT MANAGEMENT
AND PROFESSIONALS?

It means primarily that we are being challenged to produce an increasing number
of more complex information systems. And we are being challenged to do so
within the constraints of limited resources, compounded by the fact that each
new system built requires an increase in maintenance or support resources, thus
detracting from the resources available to build new systems.
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HOW CAN WE MEET THIS CHALLENGE?

The engineering and manufacturing industries were faced with a similar
problem—to produce more, higher-quality products within limiting resource
constraints. Their solution was to provide a systematic, engineering discipline to
the development effort, controlled by advanced management techniques and
supported by new technologies such as computer-aided design and manufac-
turing (CAD/CAM) and computer-aided engineering (CAE). Engineers and
manufacturers became smarter about how they did their work. Systems
development managers and professionals must now follow suit. Software
developers must be able to keep pace, in productivity and quality, with hardware
developers.

There has been much work done in this area already. The purveyors of
methodologies and design techniques, the vendors of programming and
generation tools, and the suppliers of project control systems all offer partial
solutions. To be effective, however, these solutions must be INTEGRA TED.
Some effort toward integration has already been made in the government arena.
For example, the DoD STARS (Software Technology for Adaptable Reliable
Systems) program is endeavoring to specify a complete environment for
developing software in a controlled, managed environment. What is needed is an
identification of these advances and a translation from the research environment
to the real-world business of information systems development.

Information Systems Development is a comprehensive, practical manual
for evaluating software engineering technology and applying it to the
development of information systems. It examines the planning, management,
control, and development processes involved in systems development, and
provides a blueprint for a software engineering management information system
to integrate these processes.

USERS’ GUIDE FOR INFORMATION SYSTEMS
DEVELOPMENT

This book, itself a system, is a set of specifications for a system to build
information systems. A system to build systems is relatively complex and
contains recursion and iteration of various processes. This is not bad if you are
describing the system to a computer in a programming language that contains
DO-WHILE, PERFORM, and/or CALL constructs. English, on the other
hand, is not so structured. Because people cannot read in a parallel processing
mode, each of the four parts contains enough information to stand alone. This
helps to eliminate the need to constantly cross-reference to other parts of the text.

Although every author hopes and dreams that readers will hang on his or
her every word, reality indicates that this is not true. Since each part is capable of
being read independently, the reader can random-access the part of the book that
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addresses a specific informational need. This is a by-product of the high
cohesion/low coupling of the individual parts of the book.

Since every good system needs a users’ guide, such a guide for this text is
included below. For each part, the general content and major audience are
included.

PART I: Introduction.

The introduction provides the student, professional, and manager with a
historical perspective of the challenges (both immediate and long term) facing the
software development industry, and defines software engineering. This section is
important to an understanding of the other sections.

PART II: Systems Planning Process.

A prime contention of the management aspects of the software engineering
approach to systems development is that management is a function of planning.
This is “must” reading for managers, but could be skipped by project managers
and software development professionals if Chapter 6 were read.

PART Illl: Software Engineering
Transformation Process.

This section deals primarily with the technical aspects of managing systems
projects. Life cycles and development techniques are described. This is an
important section for the professional and the project manager. Senior
management would benefit from reading Chapter 11.

PART IV: Computer-Aided
Software Engineering.

This part looks at the management information system (SE/ MIS) required
to support the software engineering transformation process. The emerging
CASE technology as a mechanism to automate the SE/ MIS, where it is headed,
and what it means to software development are discussed. The premise is that
CASE is the mechanism which will enable the software engineering approach to
be implemented in a consistent, cost-effective manner. The impact of artificial
intelligence on CASE is discussed. This section is highly recommended for all
readers and is required reading for senior and middle management.

A NOTE ON CHARTS AND DIAGRAMS

There are numerous diagrams in this book depicting the relationship between
the various entities and processes involved in developing information systems.
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The representation used in many of these diagrams is process-flow notation. In
Part 1V, ananalysis of the various system development techniques is portrayed in
which process-flow development techniques are discussed. It is important to note
that process-flow notation is an excellent method of modeling or representing a
known environment and is widely recognized and understood by information
‘systems professionals. However, as will be evident from reading Part IV, it is not
necessarily the best or the only method for discovery and definition when applied
to information systems analysis and design. Process-flow notation was adopted
for convenience and should not be construed as an endorsement of process-flow
design techniques.
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1

The Software Challenge

1.1 INDUSTRY GROWTH MEANS MORE SOFTWARE

Point: In 1983, IBM sold more personal computers (IBM/PC) than it
had sold all other types of computers since it was founded. More than
90% of these IBM/PCs were sold to business and government.

Point: In less than five years Apple Computer Company moved from
being a garage operation to the Fortune 500.

Point: In the 1970s, the Radio Shack Division of Tandy Company
moved into the personal computer business. The TRS-80 computer line
now accounts for the majority of Tandy’s revenue.

Point: In 1983, Time magazine’s “Man of the Year” was the computer.

Point: In 1983, President Ronald Reagan announced the Strategic
Defense Initiative (SDI), known to the press as the “Star Wars Defense
Program,” a program of high-technology defense systems predicated on
a fewer number of “smart” (i.e., software controlled) weapons rather than
larger numbers of troops and conventional (dumb) weapons.

In the last decade, there has been an explosive growth in the rate of

proliferation of computers. Daily, new companies are springing up offering
faster, cheaper, more powerful devices. As the number of new computers
grows, so too grows the need for computer software, which is required to
make the computers perform. The demand for software is being driven by the



