Information ,

Systems
evelopment

Principles of
Computer-aided

Software
Engineering

ALBERT F. CASE, JR.

TH
- 8761930

INFORMATION
SYSTEMS
DEVELOPMENT:
PRINCIPLES OF COMPUTER-AIDED
SOFTWARE
ENGINEERING

IARHRAAR

E8761930
ALBERT F. CASE, JR.

Nastgc’(f;t‘.);bg)ﬁ:“ jon
{ - *
anh
S

PRENTICE-HALL
Englewood Cliffs, New Jersey 07632

i 2 ’. a

(AR

Library of Congress Cataloging-in-Publication Data

Case, Albert F.
Information systems development.

Bibliography: p.

Includes index.

1. System design. 2. Computer software—
Development. 1. Title.
QA76.9.S88C39 1986 005.1 85-25567
ISBN 0-13-464520-0

Editorial / production supervision and
interior design: Carol L. Atkins

Cover design: Lundgren Graphics, Ltd.

Manufacturing buyer: Gordon Osbourne

© 1986 by Prentice-Hall
A Division of Simon & Schuster, Inc.
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America ~

10 9 8 7 65 4 3 2 1

ISBN 0-13-4k4520-0 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Whitehall Books Limited, Wellington, New Zealand

8761930

To Deb, Kim, Chris, Mom, and Dad

Preface

OBJECTIVES OF THIS BOOK

One can rarely pick up a trade journal or systems management text without
finding an article on the subject of managing the systems development process,
ensuring the satisfaction of systems users, or keeping project budgets under
control. Now the subject of the “software challenge,” the challenge of producing
computer software systems of high quality and low cost in a timely fashion, is
becoming a topic of interest to the popular and business press.

There are, today, tools, techniques, methodologies, and strategies available
to software development management to meet the software challenge. The
intention of Information Systems Development: Principles of Computer-Aided
Software Engineering is to outline an integrated strategy and methodology for
improving information systems development productivity. This strategy calls
for:

I. A structured, well-defined planning process that drives systems
development
2. Anengineering approach to developing software and managing projects

3. Specifications for a computer-aided software engineering (CASE)
system, an automated tool kit to support managers and software
developers

Although the strategy and procedures outlined in this book are oriented to
the process of developing business-oriented information systems, the techniques
and processes outlined support engineered products/embedded systems and

xi

xii Preface
large-scale special-purpose systems (such as those of the Department of Defense
and the aerospace industry) as well.

AUDIENCE

Information Systems Development presents a comprehensive management and
technical overview of the process of developing information systems. Its
management and planning procedures and implementation recommendations
would be of great value to a director or vice president of management
information systems (MIS). Since the specific technical processes for designing
software are covered, this book would also be an excellent guide for managers,
analysts, or consultants charged with selecting and implementing development
techniques.

Project and systems development managers will find the discussions of the
systems development life cycle and project management techniques most helpful
in managing their projects. Some of the techniques can be implemented
immediately with visible, short-term results.

Since this book examines and defines the software development process
from planning to implementation, it could be used as either a primary or
supplementary textbook for advanced courses in MIS or project management.

WHY THIS BOOK WAS WRITTEN:
THE SOFTWARE CHALLENGE

The “software challenge” refers to the conflict between the desire on the part of
data processing users to have new, high-quality* information systems, and the
ability of the systems development organization or department to deliver them in
a timely, cost-effective manner.

The software challenge is really two problems. The first problem is
immediate. It is relatively common knowledge that development projects rarely
come in on target. Systems installed typically have extensive “bug-fixing”
maintenance periods after installation, frequently disrupting the normal
operations of the enterprise. Software development is expensive and unreliable.

The second problem is more insidious and less visible. There are limited
software development resources. A recent U.S. Department of Defense (DoD)
study entitled “Software Technology for Adaptable Reliable Systems” indicated
that demand for computer software is increasing at a 129% compound rate
annually, while the supply of expert computer software professionals is growing

*Throughout this book, the term “high-quality” will represent both absence of defect and
adherence to the user’s needs.

Preface xiii

at only a 4% compound rate. Present productivity tools can be expected to
increase productivity only 4%. This study concludes, therefore, that by 1990,
there could be a shortage of qualified software development personnel of as many
as | millon persons. This means that while demand for software is growing, the
resources that can provide it are not. This translates directly into higher labor
costs, hence higher software costs. Even if the developers are available, they may
not be affordable.

FUELING THE GROWTH IN SOFTWARE DEMAND

What is fueling this tremendous growth in demand for computer software?

First, tremendous advances in hardware engineering and technology,
combined with the plummeting cost of computers (mainframe, mini, micro, and
home), are fueling demand for application software to make these computers
operate.

Second, during the 1970s, quality of product and productivity of the
American work force threatened the very survival of the U.S. economic system.
Executive management recognized that the computerization of America was the
key to regaining American industrial and economic supremacy. The latest
software applications to support this computerization are significantly more
complex than the applications developed in the 1960s and 1970s.

Third, the world of consumer products has discovered the microchip.
Everything from automobiles, dishwashers, and microwave ovens to industrial
photocopiers and robotics systems are now computer controlled. This new
world of embedded systems, or engineered computer products, represents a
whole new vista of software applications.

Fourth, a growing awareness of the “Information Age,” spurred by such
works as Alvin Toffler’s Third Wave and John Naisbitt’s Megatrends, has made
mainstream America more computer literate. Hence they are more demanding of
organizations that provide computer software.

WHAT DOES THIS MEAN TO SOFTWARE
DEVELOPMENT MANAGEMENT
AND PROFESSIONALS?

It means primarily that we are being challenged to produce an increasing number
of more complex information systems. And we are being challenged to do so
within the constraints of limited resources, compounded by the fact that each
new system built requires an increase in maintenance or support resources, thus
detracting from the resources available to build new systems.

xiv Preface

HOW CAN WE MEET THIS CHALLENGE?

The engineering and manufacturing industries were faced with a similar
problem—to produce more, higher-quality products within limiting resource
constraints. Their solution was to provide a systematic, engineering discipline to
the development effort, controlled by advanced management techniques and
supported by new technologies such as computer-aided design and manufac-
turing (CAD/CAM) and computer-aided engineering (CAE). Engineers and
manufacturers became smarter about how they did their work. Systems
development managers and professionals must now follow suit. Software
developers must be able to keep pace, in productivity and quality, with hardware
developers.

There has been much work done in this area already. The purveyors of
methodologies and design techniques, the vendors of programming and
generation tools, and the suppliers of project control systems all offer partial
solutions. To be effective, however, these solutions must be INTEGRA TED.
Some effort toward integration has already been made in the government arena.
For example, the DoD STARS (Software Technology for Adaptable Reliable
Systems) program is endeavoring to specify a complete environment for
developing software in a controlled, managed environment. What is needed is an
identification of these advances and a translation from the research environment
to the real-world business of information systems development.

Information Systems Development is a comprehensive, practical manual
for evaluating software engineering technology and applying it to the
development of information systems. It examines the planning, management,
control, and development processes involved in systems development, and
provides a blueprint for a software engineering management information system
to integrate these processes.

USERS’ GUIDE FOR INFORMATION SYSTEMS
DEVELOPMENT

This book, itself a system, is a set of specifications for a system to build
information systems. A system to build systems is relatively complex and
contains recursion and iteration of various processes. This is not bad if you are
describing the system to a computer in a programming language that contains
DO-WHILE, PERFORM, and/or CALL constructs. English, on the other
hand, is not so structured. Because people cannot read in a parallel processing
mode, each of the four parts contains enough information to stand alone. This
helps to eliminate the need to constantly cross-reference to other parts of the text.

Although every author hopes and dreams that readers will hang on his or
her every word, reality indicates that this is not true. Since each part is capable of
being read independently, the reader can random-access the part of the book that

Preface XV

addresses a specific informational need. This is a by-product of the high
cohesion/low coupling of the individual parts of the book.

Since every good system needs a users’ guide, such a guide for this text is
included below. For each part, the general content and major audience are
included.

PART I: Introduction.

The introduction provides the student, professional, and manager with a
historical perspective of the challenges (both immediate and long term) facing the
software development industry, and defines software engineering. This section is
important to an understanding of the other sections.

PART II: Systems Planning Process.

A prime contention of the management aspects of the software engineering
approach to systems development is that management is a function of planning.
This is “must” reading for managers, but could be skipped by project managers
and software development professionals if Chapter 6 were read.

PART Illl: Software Engineering
Transformation Process.

This section deals primarily with the technical aspects of managing systems
projects. Life cycles and development techniques are described. This is an
important section for the professional and the project manager. Senior
management would benefit from reading Chapter 11.

PART IV: Computer-Aided
Software Engineering.

This part looks at the management information system (SE/ MIS) required
to support the software engineering transformation process. The emerging
CASE technology as a mechanism to automate the SE/ MIS, where it is headed,
and what it means to software development are discussed. The premise is that
CASE is the mechanism which will enable the software engineering approach to
be implemented in a consistent, cost-effective manner. The impact of artificial
intelligence on CASE is discussed. This section is highly recommended for all
readers and is required reading for senior and middle management.

A NOTE ON CHARTS AND DIAGRAMS

There are numerous diagrams in this book depicting the relationship between
the various entities and processes involved in developing information systems.

Xvi Preface

The representation used in many of these diagrams is process-flow notation. In
Part 1V, ananalysis of the various system development techniques is portrayed in
which process-flow development techniques are discussed. It is important to note
that process-flow notation is an excellent method of modeling or representing a
known environment and is widely recognized and understood by information
‘systems professionals. However, as will be evident from reading Part IV, it is not
necessarily the best or the only method for discovery and definition when applied
to information systems analysis and design. Process-flow notation was adopted
for convenience and should not be construed as an endorsement of process-flow
design techniques.

ACKNOWLEDGMENTS

This book is the culmination of more than three years of research, tinkering, and
thinking about improving the way information systems are developed. Like any
other major project, it cannot be done by a single person. Although my name
appears on the cover, numerous people have contributed to the success of this
endeavor. :

First, I would like to thank the following executives of Nastec Corporation:
Ken Hill, Jim McGuire, Dick Ramsdell, Al Connor, Tom Long, and John
Manley (who is now the director of the Software Engineering Institute at
Carnegie-Mellon University). They not only tolerated my considerable pre-
occupation with this book, but contributed to the effort with ideas,
encouragement, and resources. (The entire original manuscript, both graphics
and text, was prepared at Nastec on a CASE 2000 Workstation.) Furthermore,
they gave me the opportunity to validate many of the concepts in this book. This
would not have been possible under other circumstances.

While most of my professional colleagues contributed in some fashion to
this book, some in particular, should be mentioned. Jim Blake applied many of
the principles in this book to his projects, and tempered some of my more
avant-garde ideas with practical experience. Vaughn Frick is a walking
encyclopaedia of information on development techniques and provided
considerable insight. Byron Burke assisted me in the area of automating life-cycle
methodologies.

Much of the work for this book was done while I was at Ryder System—
Automotive Carrier Division. Greg Vogel (then Group Controller for the M&G
Convoy subsidiaries) welcomed the use of the concepts in this book for the
systems development work in his area of responsibility. David Caswell, also from
Ryder, strongly encouraged the project.

There are two other associates who deserve credit for prodding me to
completion on this project. Dr. Eric Streiff, Dean of Continuing Education,
State University of New York at Buffalo, was enough of a risk-taker to let me
develop and teach a new course on data processing project management in the

Preface xvii

Millard Fillmore College Division. The class notes for that course ultimately
evolved into this book. I would also like to thank Karl Karlstrom, my editor at
Prentice-Hall. Karl tolerated three missed deadlines, yet continued to support
the project and prodded me to completion.

Last, but certainly not least, I would like to thank my wife, Deborah, my
daughter Kimberly Marie and my son, A. F. Christopher Case 111 who suffered
through late nights, missed dinners and absent weekends (while I tried to make
up for three missed deadlines). Not once did they waver in their support and
encouragement for me to complete this project or complain about my share of
the chores which went undone.

In addition to those mentioned there were many others who contributed to
this effort: former students, business associates, and friends who gave me ideas,
tried out the concepts, and provided valuable critiques of this approach to
building systems. I thank them all. The successful and beneficial aspects of this
book are the result of all of these contributions; however, any shortcomings,
errors, or omissions are my own responsibility—those I will share with no one
else.

TRADEMARK ACKNOWLEDGMENTS

PRIDE and PRIDE/asdm are registered trademarks of M. Bryce and
Associates, Inc. NASTEC CASE2000and DesignAid are registered trademarks
of Nastec Corporation. LifeCycle Manager and GraphiText are also Nastec
Corporation trademarks. SPECTRUM and SPECTRUM)/ Structured are
trademarks of Spectrum International, Inc. SDM/70 and SDM/ Structured
are trademarks of AGS Management Systems, Inc. Data Structured Systems
Design and DSSD are registered trademarks of Ken Orr and Associates, Inc.
IBM, IBM Personal Computer| XT, IBM Personal Computer/ AT and IBM
3270 PC are registered trademarks of International Business Machines
Corporation.

Contents

PREFACE xi

PART 1 INTRODUCTION

Chapter 1 THE SOFTWARE CHALLENGE 1

1.1

Industry Growth Means More Software]

1.2 The Need for More Complex Systems Grows 2

Chapter 2 THE MANAGEMENT DILEMMA 3

2.1
22
2.3
24
2.5

The Effect of Limited Resources 3

The Cost of Software/Systems Development 4
Growing Project Backlogs: The Impact of Support 5
Late Projects 6

User Dissatisfaction 7

vi

Contents

Chapter 3 THE SOFTWARE ENGINEERING SOLUTION 8

3.1
32

3.3

34

3.5
3.6
3.7
3.8
39

What Is Software Engineering? &

The Benefits of the Software Engineering
Approach 10

Software Engineering’s Prime Objective:
Improving Productivity 11

Software Engineering: A Synthesis of Methodologies,
Techniques, and Tools 12

Implementing Software Engineering 15
Strategic System Planning 17
Software Development 17

Integration 18

Summary 18

Chapter 4 MANAGEMENT THEORY AND SOFTWARE
ENGINEERING 19

4.1
4.2
4.3
44
4.5
4.6

Classical Management Functions 19
Strategic Systems Management 2]
Tactical Systems Management 2]
Operational Systems Management 22
Management and Organization 22
Summary 24

Chapter 5 THE SYSTEMS MANAGEMENT
MACRO-SYSTEM 26

5.1
5.2
3.3
54

PART Il

Systems and Macro-systems 26

Systems Development as a Macro-system 28
Macro-system Architecture 28

Information Requirements 30

PLANNING AND MANAGING

SYSTEMS DEVELOPMENT
Chapter 6 A SYSTEMS PLANNING OVERVIEW 32

6.1
6.2
6.3
6.4

Strategic Systems Planning 32
Tactical Systems Planning 34
Operational Systems Planning 34
Summary 35

Contents

Chapter 7 STRATEGIC SYSTEMS MANAGEMENT

7.1 Introduction 36

7.2 The Systems Architecture 4]

7.3 The Strategic Implementation Plan 60
7.4 Implementing Strategic Planning 67

Chapter 8 TACTICAL SYSTEMS MANAGEMENT

8.1 Introduction 7/

8.2 Resource Planning 74
8.3 Application Planning 80
8.4 Summary &2

Chapter 9 OPERATIONAL SYSTEMS MANAGEMENT

9.1 Introduction &3

9.2 Project Definition &85

9.3 Estimation &7

9.4 Scheduling 90

9.5 Revision 97

9.6 Architectural Validation 101

Chapter 10 SYSTEMS PLANNING METRICS

10.1 Productivity Metrics 103
10.2 Metrics for Estimation and Scheduling 106

PART Il SOFTWARE ENGINEERING
TRANSFORMATION PROCESS

Chapter 11 AN OVERVIEW OF THE SYSTEMS
DEVELOPMENT TRANSFORMATION

PROCESS

1.1 The Software Engineering Life Cycle 108

11.2 Life Cycles and Development Techniques 110
11.3 The Methodology Thought Process 110

11.4 Managing the Software Engineering Process 112

vii

36

71

83

103

108

viii Contents

Chapter 12 SOFTWARE ENGINEERING DESIGN
TECHNIQUES 113
12.1 Introduction 113
12.2 Process-flow Techniques 115
12.3 Data Structured Techniques 119
12.4 Linguistic Techniques 124
12.5 Summary 125

Chapter 13 SOFTWARE ENGINEERING LIFE CYCLES 132

13.1 Introduction 132
13.2 The Life-Cycle Architecture 135

13.3 Controversy over the Life-Cycle Approach 142
13.4 Summary 149

Chapter 14 FOURTH-GENERATION DEVELOPMENT
TECHNIQUES 150

14.1 What the Fourth Generation Is 150
14.2 Fourth-Generation Languages 152
14.3 The Prototyping Process 154

14.4 Compatibility of Software Engineering and
Prototyping 156

14.5 Alternative System Implementation Approaches 157
14.6 Classifications of Systems 157

PART IV COMPUTER-AIDED SOFTWARE
ENGINEERING: AUTOMATING THE
SOFTWARE ENGINEERING MIS

Chapter 15 AN OVERVIEW OF THE SOFTWARE
ENGINEERING MIS 161
15.1 Introduction 161
15.2 Information System Requirements /63
15.3 SE/MIS Architecture 166
154 Summary 172

Contents

Chapter 16 CASE: AUTOMATING THE SOFTWARE

Chapter 17

Appendix

ENGINEERING MIS 174

16.1 Introduction 174

16.2 CASE System Requirements 178
16.3 CASE System Architecture 183

16.4 Operational CASE Systems 792

16.5 CASE and the Fifth Generation: Systems That
Build Systems 196

16.6 Summary 200

IMPLEMENTING SOFTWARE ENGINEERING
AND CASE 203

17.1 Mechanics of Implementation 203

17.2 Human Issues in Software Engineering:
Decision Making and Consensus 208

17.3 Human Issues in Software Engineering:
Overcoming Technology Shock 212

SOFTWARE ENGINEERING LIFE CYCLE 216

A.1 Software Engineering Life Cycle 216
A.2 Activities and Tasks 217

BIBLIOGRAPHY 223
INDEX 227

1

The Software Challenge

1.1 INDUSTRY GROWTH MEANS MORE SOFTWARE

Point: In 1983, IBM sold more personal computers (IBM/PC) than it
had sold all other types of computers since it was founded. More than
90% of these IBM/PCs were sold to business and government.

Point: In less than five years Apple Computer Company moved from
being a garage operation to the Fortune 500.

Point: In the 1970s, the Radio Shack Division of Tandy Company
moved into the personal computer business. The TRS-80 computer line
now accounts for the majority of Tandy’s revenue.

Point: In 1983, Time magazine’s “Man of the Year” was the computer.

Point: In 1983, President Ronald Reagan announced the Strategic
Defense Initiative (SDI), known to the press as the “Star Wars Defense
Program,” a program of high-technology defense systems predicated on
a fewer number of “smart” (i.e., software controlled) weapons rather than
larger numbers of troops and conventional (dumb) weapons.

In the last decade, there has been an explosive growth in the rate of

proliferation of computers. Daily, new companies are springing up offering
faster, cheaper, more powerful devices. As the number of new computers
grows, so too grows the need for computer software, which is required to
make the computers perform. The demand for software is being driven by the

