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Nonlinear Physical Science focuses on recent advances of fundamental theories and
principles, analytical and symbolic approaches, as well as computational techniques
in nonlinear physical science and nonlinear mathematics with engineering applica-
tions.

Topics of interest in Nonlinear Physical Science include but are not limited to:

- New findings and discoveries in nonlinear physics and mathematics

- Nonlinearity, complexity and mathematical structures in nonlinear physics

- Nonlinear phenomena and observations in nature and engineering

- Computational methods and theories in complex systems

- Lie group analysis, new theories and principles in mathematical modeling

- Stability, bifurcation, chaos and fractals in physical science and engineering

- Nonlinear chemical and biological physics

- Discontinuity, synchronization and natural complexity in the physical sciences
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Foreword

“The essence of mathematics lies entirely in its freedom”
by Georg Cantor (1845—1918).

Solving nonlinear problems is inherently difficult. Perturbation techniques are mostly
used to gain analytic approximations of nonlinear equations. Unfortunately, pertur-

bation methods depend too heavily on small physical parameters, and perturbative

results are valid only in cases of weak nonlinearity. Although some non-perturbation
techniques were developed to overcome the restrictions of perturbation methods,

neither of them can guarantee the convergence of approximation series.

The homotopy analysis method (HAM) is a promising analytic method for highly
nonlinear equations, which has been successfully applied in science, applied math-
ematics, finance, and engineering. Based on the concept of homotopy in topology,
the homotopy analysis method is being developed to solve nonlinear problems inde-
pendent of any small physical parameters. Especially, the HAM introduces a totally
new concept “convergence-control” by means of the “convergence-control param-
eter” that provides a simple way to guarantee the convergence of approximation
series. In fact, it is the “convergence-control parameter” that makes the HAM dif-
ferent from all of other analytic methods. As a result, unlike other analytic methods,
the HAM is valid for highly nonlinear problems.

Thanks to contributions of many researchers in dozens of countries, the HAM has
been developed and modified greatly in theory, and widely applied in many fields.
Written by two outstanding scholars, the book “Nonlinear Flow Phenomena and
Homotopy Analysis” describes some theoretical developments and new attempts
of the HAM, together with typical applications in flow and heat transfer of fluids.
Especially, the authors discuss the choice of initial guess, auxiliary linear operator,
auxiliary function, convergence-control parameter and so on, from the viewpoints
of applied mathematician. The selected examples are fundamental in nature and are
important for new users to understand and use the HAM. Obviously, this book is of
benefit to the advancement and wide application of the HAM.

Shijun Liao
May 26 2012



Preface

Over the last decade, the homotopy analysis method has come into prevalence as it
allows one to construct reasonably accurate approximations to nonlinear differential
equations. A wide variety of mathematical problems, appearing in areas as diverse
as fluid mechanics, chemical engineering, biology, finance, theoretical physics and
aerospace engineering, have been solved by means of homotopy analysis. Though,
the homotopy analysis method is frequently employed in the literature, there are still
a number of questions which remain open regarding the method, due in part to the
generality of the method.

In the present monograph, we highlight some of the key points which need to
be understood by those working in applied mathematics, physics and applied sci-
ence and engineering in order to apply the homotopy analysis method. That is, the
book helps the reader to develop the toolset needed to apply the method, without
sifting through the endless literature on the area. Issues of the optimal selection of
the auxiliary linear operator, auxiliary function, convergence control parameter, and
initial approximations, are discussed heuristically. Furthermore, advanced and less
frequently seen methods, such as multiple homotopies and nonlinear auxiliary oper-
ations, are discussed. As mentioned above, there are very many applications of the
homotopy analysis method in the literature. In selecting applications and specific
problems to work through, we have restricted our attention to the fluid phenom-
ena of fluid flow and heat transfer as such problems introduce a wide variety of
mathematical problems yet allow for a sufficiently narrow focus. Hence, in order to
illustrate various properties and tools useful when applying the homotopy analysis
method, we have selected recent research in the area of fluid flow and heat transfer.

We appreciate the support and motivation of prof. A.C.-J. Luo. We also acknowl-
edge the role of Higher Education Press (China) and Springer for making this book
a reality. K. V. Prasad helped in typing some of the examples.

Orlando, Florida Kuppalapalle Vajravelu
2012 Robert A. Van Gorder
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Chapter 1
Introduction

The processes in the world we live in are, more often than not, governed by nonlin-
earity. Hence, in mathematics, and also in many other sciences in which quantitative
models are useful, we often wish to obtain solutions for nonlinear equations. In the
field of differential equations, many results pertaining to linear differential equations
are well known and have been in existence for quite a while. However, in the area
of nonlinear differential equations, there is little in the way of a unifying theory. In
many cases, exact solutions for nonlinear differential equations are not to be found,
and often we must resort to numerical schemes in order to gain an understanding
of a solution to a particular nonlinear equation. When exact or analytical solutions
are obtained, one often faces with difficulty of generalizing such results to other
nonlinear differential equations.

Due to such difficulties, we frequently seek to obtain approximate solutions to a
nonlinear problem, valid over some restricted region in the domain of the original
problem. One technique which has shown great promise over the past few years is
the homotopy analysis method [1-6]. By use of the method, numerous nonlinear
differential equations have been studied in great detail (see, for instance, [7-44]).
Like many other perturbation techniques, this method is very useful as it allows us
to obtain approximate solutions to nonlinear differential equations. The homotopy
analysis method is unique among other perturbation techniques as it allows us to
effectively control the region of convergence and rate of convergence of a series so-
lution to a nonlinear differential equation, via control of an initial approximation, an
auxiliary linear operator, an auxiliary function and a convergence control parameter.

However, with such great freedom comes the dilemma of deciding just how to
proceed. There have been a number of nonlinear differential equations to which the
homotopy analysis method has been applied, however the selection of initial ap-
proximation, auxiliary linear operator, auxiliary function, and convergence control
parameter varies greatly from equation to equation and author to author. That said,
there are several underlying themes that become apparent when one examines the
literature on the area. Building on such themes, we hope to add some structure and
formality to the application of the homotopy analysis method. In particular, we dis-
cuss several features of the method and the choices one can make in the selection



2 1 Introduction

of the initial approximation, auxiliary linear operator, auxiliary function, and the
convergence control parameter. As said in [1],

“...it is necessary to propose some pure mathematical theorems to
direct us to choose the initial approximation, the auxiliary linear opera-
tor, and the auxiliary function. These mathematical theorems should be
valid in rather general cases without any prior knowledge so that we can
apply them without any physical back grounds. Up to now, it is even an
open question if such kinds of pure mathematical theorems exist or not.”

——3S.J. Liao [1]

We hope that this book helps in achieving this long range goal. We present a num-
ber of ways in which one may select the initial approximation, auxiliary linear op-
erator, auxiliary function, and the convergence control parameter when attempting
to solve a nonlinear differential equation by the homotopy analysis method. We also
focus our attention on the properties of solutions resulting from such a choice of the
initial approximation, auxiliary linear operator, auxiliary function, and the conver-
gence control parameter. These choices play a large role in the computational effi-
ciency. Further, we discuss the convergence properties of solutions obtained through
the homotopy analysis method.

We primarily discuss nonlinear ordinary differential equations and associated
nonlinear operators. However, such discussion is usually general enough to use for
solving various nonlinear partial differential equations, as well. We discuss many
cases in general while still maintaining applicability of the results to actually com-
puting solutions via the homotopy analysis method. As frequent users of the method,
we understand the importance of implementing the presented results.

We note that a good companion to this book will be Liao’s original work [1],
Beyond Perturbation: Introduction to the Homotopy Analysis Method, which gives
some guidelines as to the selection of the auxiliary linear operator, initial guess,
auxiliary function, and so on. Knowledge of the first half of this text, in addition to
the present article, shall give anyone new to the homotopy analysis method a good
idea of how to implement the method.

The outline of the book will be as follows. In Chapters 2 — 4, which comprise the
first part of the book, we outline the general method of homotopy analysis. This first
set of chapters serves as an outline to the method, which can be directly employed by
researchers in engineering, applied physics, and other applied sciences. While the
discussion is general, there is no knowledge of advanced mathematics required. We
keep the discussion general here, so as to provide such a framework for researchers.
In order to give the reader the best preparation for using the method, we realize
that often the best way to convey information is through worked examples. Thus,
at the end of Chapters 2 — 4 we provide multiple real-world examples of nonlinear
equations that have been solved via homotopy analysis, in order to illustrate the
theoretical material.

In the second part of the book, Chapters 5 — 6 shift the focus to concrete examples
and consider problems in fluid mechanics and heat transfer governed by nonlinear
differential equations in order to give real world examples of the application of



References 3

homotopy analysis. These problems are pulled from the literature, to give a sampling
of work in the field. Such specific examples will benefit the reader in seeing how the
general methods of Chapters 2 — 4 may be applied to actual problems of physical
relevance. We consider such problems in Chapters 5 and 6.
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