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Preface

Finite-dimensional vector spaces are particularly suited as the first
topic for study in abstract Algebra. One reason for this is that the
theory is straightforward without being trivial, and it leads to a com-
plete description of such algebraic systems. Another reason is that
vector spaces are encountered in all branches of mathematics, from
analysis through geometry and topology. Finally, there are concrete
examples of vector spaces available to illustrate the theory as well as
to prepare the student for applications in physics, engineering, and
other sciences.

Throughout the book, the underlying field of scalars is assumed to
be the real number field R. However, in almost all sections of the
book any other field F could be substituted for R without necessitating
any changes.

The simple properties of vector spaces and their subspaces are
given in the first chapter. The two principal examples of vector spaces,
geometric vector spaces and the space of n-tuples of real numbers,
are also presented in this chapter so that they might be used through-
out the book.

Most of the theory is in Chapter 2, where the invariance of the
dimension of a vector space is proved. Inner products are discussed
in Chapter 3, and the existence of a normal orthogonal basis is
proved for finite-dimensional vector spaces.

The very useful cross product operation in geometric vector spaces
is investigated in Chapter 4. Then applications are made to the find-
ing of equations of lines and planes in space.

In an appendix, fields in general and ordered fields in particular
are defined. There is also a short section on coordinate systems for
lines, planes, and space. Vector spaces over the complex number field
are touched on briefly in another section. The final section relates the
algebra of vectors to the quaternion algebra of Hamilton.
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vi PREFACE

It is hoped that the book might prove useful in a variety of ways.
In the first place, the material is detailed and amply illustrated for
individual study. Thus, the student of physics or mathematics could
use the book for supplementary reading on vectors. Another possible
use is as a text in a senior high school course on abstract algebra.
Finally, this book, along with Linear Algebra in the Prindle, Weber &
Schmidt Complementary Series could serve as texts in a college course
on vectors and linear algebras.

RICHARD E. JOHNSON
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Chapter One

Vector Spaces

1. DEFINITION

A vector is an element of a vector space. In turn, a vector space is a
set of objects, called vectors, which is closed under operations of addi-
tion and scalar multiplication and which satisfies certain algebraic laws.
A precise definition of a vector space is given below.

It is worthwhile to study vector spaces for the reason that many
of the algebraic systems encountered in applications of mathematics are
in essence vector spaces. By studying general vector spaces, without
regard to the nature of the elements, we can develop the properties
common to all vector spaces.

Throughout this book the set of all real numbers will be denoted
by R. There are two basic operations in R, addition and multiplication,
and a basic order relation of greater than or equal to. Of course, R also
has operations of subtraction and division, and order relations of greater
than, less than or equal to, and less than. With respect to its operations
and relations, R is an ordered field as defined in the Appendix.

1.1 DEFINITION OF A VECTOR SPACE. A vector space con-
sists of a set V, an operation of addition in ¥V, and an operation of

scalar multiplication of ¥ by R. Addition in ¥ has the following prop-
erties:

(1) x+y=y+xforall x,yeV. (Commutative law)
Q) x+GG+2z)=Cx+y)+zforallx,y,zeV. (Associative law)
(3) There exists an element 0 in ¥ such that
0+x=x+4+0=x for all xeV. (Identity element)
(4) Associated with each x in ¥V is an element —x in ¥V such that
x4+ (—x) = (—x) + x =0forall xe V. (Inverse elements)
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2 VECTOR ALGEBRA

For each a e Rand x ¢ V, the scalar product of x by a is a unique element
of ¥ denoted by ax. Scalar multiplication has the following properties:

(5) a(x+y)=ax+ayforallaeR,x,yeV. (Distributive law)
(6) (a+b)x =ax+bxforalla,beR,xeV. (Distributive law)
(7) (ab)x = a(bx)foralla,beR,xeV. (Associative law)

(8) 1x =xforallxeV. (Identity element)

The eight properties of addition and scalar multiplication listed
above are quite familiar to all of us. Thus properties (1)-(4) are enjoyed
by addition in R and properties (5)-(8) are enjoyed by multiplication
in R, if we consider set V as being R.

We shall call elements of ¥ vectors and those of R scalars. Vectors
are denoted by boldface letters to clearly distinguish them from scalars.
Usually, we denote scalars by the first few letters of the alphabet and
vectors by the last few. In writing symbols for vectors, you might wish
to put an arrow over the symbol to indicate that it denotes a vector.

Additional properties of a vector space may be derived from the
eight defining ones. For example, we might expect the following proper-
ties to hold since corresponding ones hold in a field. Let V¥ be a vector
space, x,y, ze V,and a e R.

12 Ifx+z=y+zorz+x=2z+y,thenx =y. (Cancellation
law)

1.3 ax = 0 if and only if either a = 0 or x = 0.

1.4 —(ax) = (—a)x = a(—x).
Proof of 1.2: If x + z = y + z, then
x+2z)+(-2)=@F+2z)+ (-2

x+[z+(—2)]=y+[z+ (—2)] (Assoc. law)
x+0=y+4+0 (Inverse el.)
x=y (Identity el.).

If z+ x =z 4y, then x + z = y + z by the commutative law and
x = y by the proof above.
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Proof of 1.3: This property states that ax = 0 if and only if a is
the zero scalar or x is the zero vector. If @ = 0, the zero element of R,
then 0 =0+ 0 and Ox = (0 + 0)x = Ox + Ox by 1.1(6). Since 0 +
Ox = Ox by 1.1(3), we have

0 + Ox = Ox + Ox
and
0 = 0Ox

by 1.2. A similar argument shows that a0 = 0.

Conversely, assume that ae R and xe ¥ are such that ax = 0.
If a 0, then a1 exists and

x=1Ix = (aa)x = al(ax) = a0 = 0.

If a = 0, then ax = 0 by the proof above. This proves 1.3.
Proof of 1.4: By 1.1(4), ax + [—(ax)] = 0, whereas by 1.1(7)
and 1.3, 0 = Ox = [@ + (—a)lx = ax + (—a)x. Therefore

ax + [—(ax)] = ax + (—a)x
—(ax) = (—a)x

by the cancellation law. A similar proof shows that —(ax) = a(—x).
This proves 1.4.
The operation of subtraction in V is defined as follows:

and

x—y=x+4+(—y)forallx,yeV.

It is easily shown that vector subtraction has properties similar to those
of subtraction in R. For example,

a(x —y)=ax —ayforallx,yeV, aeR,
—(x—y)=(—x)+ yforallx,yeV.
Henceforth we shall assume that the reader is familiar with these

properties.

EXERCISES

In the following exercises ¥V is assumed to be a vector space.

1. Prove that a0 = 0 for all a ¢ R (part of 1.3).
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Prove that —(ax) = a(—x) for alla ¢ Rand x ¢ V' (part of 1.4).
State and prove a cancellation law for scalar multiplication.
Provethata(x — y) = ax — ayforallx,y e V, a eR.

Prove that —(x —y) = (—x) + y forall x, y e V.

Wk B

2. SUBSPACES

If ¥ is a vector space and S is a nonempty subset of ¥ which is
closed under addition and scalar multiplication (i.e., x 4+ y and ax are
in S for all x, y €S, aeR), then S is a vector space in its own right.
Thus 0 € S since 0 = Ox for any x ¢ S. If x ¢ S, then —x e S also, since
—x = —(Ix) = (= 1)x. It is now clear that 1.1(1)~(8) hold for S as
well as V. We call S a subspace of V.

For each x ¢ V' the set of all scalar multiples of x is denoted by Rx,

Rx = {ax |aeR}.
Since
ax +bx = (a+ b)x and b(ax) = (ba)x,

the set Rx is closed under addition and scalar multiplication and is
therefore a subspace of V. The set of scalar multiples of 0 is simply {0}.
Thus {0} is a subspace of V; in fact, {0} is the least subspace of V in the
sense that it is contained in every other subspace of V. Trivially, V is a
subspace of itself according to our definition.

We call a subspace S of V proper if S {0} and S = V. If xe V,
x # 0, then Rx is a minimal nonzero subspace. For if S is a proper
subspace of ¥ and S C Rx, and if y € S, y # 0, then y = ax for some
nonzero a e R. Hence (ba™')y = (ba~')ax = bx is in S for every b ¢ R
and Rx C S. It follows that S = Rx. The subspace Rx is proper unless
V' = Rx, a rather uninteresting possibility.

If S; and S, are subspaces of a vector space V, then so is their
intersection,

SiMN S = {xeV|xeSiandx e S}.

For if x and y are in both S; and S,, then so are x + y and ax for every
aeR.
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More generally, if {S;, Ss, - - -, S,} is any finite set of subspaces of V,
then their intersection S; M S; /M --- M S, also is a subspace of V.
The notation

NS
i=1

is often used for this intersection. Evidently S; M Se M --- M S, is the
largest subspace of V contained in all the subspaces Si, Sy, - - -, Sh.

Another useful way of forming a subspace from two given sub-
spaces S; and S, of a vector space V is to take their sum:

Si+ S = {x1 + x2 | x1 € S1, X2 € So}.

To show that S; + S, actually is a subspace of V, let x; + xs, y1 + yz ¢
S: + Sz, where x;, y; €.S;, and a € R. Then

(Xl + X2) + ()’1 + }’2) = (Xl + )’1) + (X2 + Y2) € Sl + Sz,
a(x1 + X2) = axi + axs € S1 + S2.

Thus S; + S. is a subspace of ¥ because it is closed under addition and
scalar multiplication.
We can similarly form the sum of »n subspaces Sy, Sy, - - -, S, of V=

Si+ S+ -+ S={xi+x+ -+ x| x:eSi}.

The sigma notation
2 S
1=1

is often used for this sum. Since 0 ¢ S, foreach i, x;, + 0 +0 + --- +
0= X1€S1+S2+ +S,,f0reach X1€S1. Thatis, S1CS1+S2 +
--+ 4 S,. Similarly,

S, C Y Siforj=1,2,---,n
i=1

It should be clear that S; + S, + - -+ + S, is the least subspace of V
containing all the subspaces S;, S, - - -, S,.

If x, y e V, then either Rx M Ry = {0} or Rx = Ry. On the other
hand,

Rx + Ry = {ax + by | a, b e R}.
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More generally, for any x;, xa, + -+, x, € V,
Z in={2aixi|aieR}-
1=1 1=1

We call § = 3 Rx; the subspace of V spanned by the vectors x;, xu,
1=1

-+, x,n. Bach vector of S'is said to be a linear combination of the n vectors
X1, X2, ***, Xp.

EXERCISES

1. If S, S, and S; are proper subspaces of V such that S; N
(S: + S3) = {0} and SN\ S; = {0}, then prove that S,N
(S + Ss) = {0}.

2. Letx;, x5, and x3 be nonzero vectors which generate a vector space V.
Ify eV, y # 0, prove that y together with some two of the vectors
X1, X2, X3 generate V.

3. Generalize Exercise 2 from 3 to n vectors.

4. If S; and S, are subspaces of ¥ such that S; D S, then prove that
S1M (S + 8) = S+ (S1M S) for every subspace S of V. (This
is called the modular law.)

3. GEOMETRIC VECTORS

For many centuries physicists have used directed line segments to
represent forces, velocities, accelerations, and other entities having
both magnitude and direction. We shall describe in this section the
space of geometric vectors, or directed line segments, used by physicists.

Consider a Euclidean plane, denoted by E,, made up of points and
lines satisfying the postulates of Euclidean geometry. Every ordered
pair (4, B) of points in E; determines a segment with endpoints 4 and B
and a direction from the initial point A to the terminal point B. We call
such a directed segment a vector in E,, and denote it by

AB.
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The set of all vectors in E, is denoted by
Ve.

It will be convenient to have a coordinate system in E, (see the
Appendix) so that each vector AB has a length denoted by

|AB]

and defined to be d(A4, B), the distance between points 4 and B.
We shall consider the vectors in ¥V, to be free vectors; i.e., two
vectors AB and CD will be considered to be equal,

AB = CD,

if and only if either [AB| = [CD| =0 (i.e., A = B and C = D) or
|AB| = [CD| > 0and AB, CD are parallel and directed in the same way
(Fig. 1.1). Thus the position of each vector in the plane is immaterial;
only its length and direction are important. If we wish, all vectors can
be assumed to have the same initial point.

The sum of two vectors AB and BC is defined to be AC,

AB + BC = AC,

as shown in Fig. 1.2. If the two vectors AB and AD have the same
initial point, then their sum is AC,

AB + AD = AC,

where AC is the diagonal of the parallelogram having AB and AD as
two of its sides (Fig. 1.3). This is true because AD = BC.

If the points 4, B, and C are collinear, then there is no parallelo-
gram associated with the sum AB + BC. Two possible cases are shown

Figure 1.1
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Figure 1.2

A

Figure 1.3
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in Figs. 1.4 and 1.5.

That vector addition is commutative is illustrated in Fig. 1.6.
Given vectors AB and BC, we select point D so that AB = CD. Then
ABCD is a parallelogram and

AB + BC = AC, BC + AB = BC + CD = BD.
Since AC = BD, we have proved the commutative law -

1.5 AB + BC = BC + AB for all AB, BC ¢ V,.
C
B
A
Figure 1.4
B
A
c
Figure 1.5
D
C BC + AB
AB+ BC B
A

Figure 1.6



